
KLayout Documentation (Qt 4): Main Index » KLayout User Manual » Layout vs. Schematic
(LVS)

Layout vs. Schematic (LVS)

LVS is a verification step which checks whether a layout matches the circuit from the schematic.
The LVS feature is described in the following topic chapters:

 Layout vs. Schematic (LVS) Overview
 LVS Introduction
 LVS Devices
 LVS Device Classes
 LVS Devices Extractors
 LVS Input/Output
 LVS Connectivity
 LVS Compare
 LVS Netlist Tweaks

A reference for the functions and objects available for LVS scripts can be found here: LVS
Reference.

KLayout 0.26 (2019-08-30 57cee792) [master]

KLayout Documentation (Qt 4): Main Index » KLayout User Manual » Layout vs. Schematic
(LVS) » Layout vs. Schematic (LVS) Overview

Layout vs. Schematic (LVS) Overview

 Basic usage of LVS scripts
 KLayout's LVS implementation
 Terminology

Basic usage of LVS scripts

Starting with version 0.26, KLayout supports LVS as a built-in feature. LVS is an important step
in the verification of a layout: it ensures the drawn circuit matches the desired schematic.

The basic functionality is simply to analyze the input layout and derive a netlist from this. Then
compare this netlist against a reference netlist (schematic). If both netlist are equivalent, the
circuit is likely to work in the intended fashion.

Beside the layout, a LVS script will also need a schematic netlist. Currently, KLayout can read
SPICE-format netlists. The reader can be configured to some extent, so the hope is that a useful
range of SPICE netlists can be digested.

While the basic idea is simple, the details become pretty complex. This documentation tries to
cover the solutions KLayout offers to implement LVS as well as the constraints imposed by this
process.

KLayout's LVS is integrated into the Macro Development IDE the same way as DRC scripts. In
fact, LVS is an add-on to DRC scripts. All DRC functions are available within LVS scripts.
Netlist extraction is performed in the DRC framework which was given the ability to recognize
devices and connections and turn them into a netlist. Although DRC does not really benefit from
these extensions, they are still useful for implementing Antenna checks for example. As it
happens, the majority of features required for LVS is documented in the DRC Reference, while
the few add-ons required specifically for LVS are documented in LVS Reference.

LVS scripts are created, edited and debugged in the Macro Editor IDE. They are managed in the
"LVS" tab. For more details about the IDE, see About Macro Development. For an introduction
about how to work with DRC scripts see Design Rule Checks (DRC) Basics.

LVS scripts carry the ".lylvs" extension for the XML form (in analogy to ".lydrc" for DRC) and
".lvs" for the plain text form (same as ".drc"). Like DRC scripts, LVS scripts can be executed
standalone in batch mode like DRC scripts. See "Using KLayout as a standalone DRC engine" in
Design Rule Checks (DRC) Basics.

KLayout's LVS implementation

The LVS implementation inside KLayout is designed to be highly flexible in terms of
connectivity, device recognition and input/output channels. Here are some highlights:

 Agnostic approach: KLayout tries to make as few assumptions as possible. It does not
require labels (although they are helpful), a specific hierarchy, specific cell names or
specific geometries. Netlist extraction is done purely from the polygons of the layout.
Labels and the cell hierarchy add merely useful hints which simplify debugging and pin
assignment, but no strict requirement.

 Hierarchical analysis: KLayout got a hierarchical layout processing engine to support
hierarchical LVS. Hierarchical processing means that boolean operations happen inside
the local cell environment as far as possible. As a consequence, devices are recognized
inside their layout cell and layout cells are turned into respective subcircuits in the netlist.
The netlist compare will benefit as it is able follow the circuit hierarchy. This is more
efficient and gives better debugging information in case of mismatches. As a positive side
effect of hierarchical layout processing the runtimes for some boolean and other
operations is significantly reduced in most cases.

 Hierarchically stable: KLayout won't modify the layout's hierarchy nor will it introduce
variants - at least for boolean and some other operations. This way, matching between
layout and schematic hierarchy is maintained even after hierarchical DRC operations.

Variants are introduced only for some anisotropic operations, the grid snap method and
some other features which require differentiation of cells in terms of location and
orientation.

 Flexible engine: The netlist formation engine is highly flexible with respect to device
recognition and connectivity extraction. First, almost all DRC features can be used to
derive intermediate layers for device formation and connectivity extraction. Second, the
device recognition can be scripted to implement custom device extractors. Five built-in
device extractors are available for MOS and bipolar transistors, resistors, capacitors and
diodes.

 Flexible I/O: Netlists are KLayout object trees and their components (nets, devices,
circuits, subcircuits ...) are fully mapped to script objects (for the main class see Netlist in
the API documentation). Netlists can therefore be analyzed and manipulated within LVS
scripts or in other contexts. It should be possible to fully script readers and writers for
custom formats. Netlists plus the corresponding layout elements (sometimes called
"annotated layout") can be persisted in a KLayout-specific, yet open format. SPICE
format is available to read and write pure netlist information. The SPICE reader and
writer is customizable through delegate classes which allow tailoring of the way devices
are read and written.

 User interface integration: KLayout offers a browser for the netlist extraction results
and LVS reports (cross-reference, errors).

Terminology

KLayout employs a specific terminology which is explained here:

 Circuit: A graph of connected elements as there are: devices, pins and subcircuits. The
nodes of the graph are the nets connecting at least two elements. If derived from a layout,
a circuit corresponds to a specific layout cell.

 Abstract circuits: Abstract circuits are circuits which are cleared from their inner
structure. Such circuits don't have nets and define pins only. Abstract circuits are
basically "black boxes" and LVS is required to consider their inner structure as "don't
care". Abstract circuits are useful to reduce the netlist complexity by taking out big IP
blocks verified separately (e.g. RAM blocks).

 Pin: A point at which a circuit makes a connection to the outside. Circuits can embed
other circuits as "subcircuits". Nets connecting to the pins of these subcircuits will
propagate into the subcircuit and connect further elements there. Pins are usually attached
to one net - in some cases, pins can be unattached (circuits abstracts). Pins can be named.
Upon extraction, the pin name is derived from the name of the net attached to the pin.

 Subcircuit: A circuit embedded into another circuit. One circuit can be used multiple
times, hence many subcircuits can reference the same circuit. If derived from a layout, a
subcircuit corresponds to a specific cell instance.

 Device: A device is a n-terminal entity describing an atomic functional unit. Devices are
passive devices (resistors, capacitors) or active devices such as transistors.

 Device class: A device class is a type of device. Device classes are of a certain kind and
there can be multiple classes per type. For example for MOS transistors, the kind is
"MOS4" (a four-terminal MOS transistor) and there is usually "NMOS" and "PMOS"

classes at least in a CMOS process. A device class typically corresponds to a model in
SPICE.

 Device extraction: Device extraction is the process of detecting devices and forming
links between conductive areas and the device bodies. These links will eventually form
the device terminals.

 Device combination: Device combination is the process of forming single devices from
combinations of multiple devices of the same class. For example, serial resistors can be
combined into one. More importantly, parallel MOS transistors ("fingered" transistors)
are combined into a single device. Device combination is a step explicitly requested in
the LVS script.

 Terminal: A "terminal" is a pin of a device. Terminals are typically named after their
function (e.g. "G" for the gate of a MOS transistor).

 Connectivity: The connectivity is a description of conductive regions in the technology
stack. A layer has intra-layer and intra-layer connectivity: "Intra-layer connectivity"
means that polygons on the same layer touching other polygons form a connected - i.e.
conductive - region. "Inter-layer connectivity" means that two layers form a connection
where their polygons overlap. The sum of these rules forms the "connectivity graph".

 Netlist: A hierarchical structure of circuits and subcircuits. A netlist typically has a top
circuit from which other circuits are called through subcircuits.

 Extracted netlist: The extracted netlist is the netlist derived from the layout. Sometimes,
"extracted netlist" describes the netlist enriched with parasitic elements such as resistors
and capacitors derived from the wire geometries. In the context of KLayout's LVS,
"extracted netlist" is the pure connectivity without parasitic elements.

 Schematic: The "schematic" is a netlist taken as reference for LVS. The "schematic" is
thought of the "drawn" netlist that is turned into a layout by the physical implementation
process. In LVS, the layout is turned back into the "extracted netlist" which is compared
to the schematic.

 Annotated layout, Net geometry: The collection of polygons belonging to the
individual nets. Each net inside a circuit is represented by a bunch of polygons
representing the original wire geometry and the device terminals. As nets can propagate
to subcircuits through pins, nets and therefore annotated layout carries a per-net
hierarchy. The per-net hierarchy consists of the subcircuits attached to one net and the
nets within these subcircuits that connect to the outer net. Subcircuits can instantiate other
subcircuits, so the hierarchy may extend over many levels.

 Layout to netlist database (L2N DB): This is a data structure combining the
information from the extracted netlist and the annotated layout into a single entity. The
L2N database can be used to visualize nets, probe nets from known locations and perform
other analysis and manipulation steps. An API for handling L2N databases is available.

 Cross reference: The cross reference is a list of matching objects from the two netlists
involved in a LVS netlist compare ("pairing"). The cross-reference also lists non-
matching items and inexact pairs. "Inexact pairs" are pairs of objects which do not match
precisely, but still are likely to be paired. The cross reference also keeps track of the
compare status - i.e. whether the netlists match and if not, where a mismatch originates
from.

 LVS database: The "LVS database" is the combination of L2N database, the schematic
netlist and the cross-reference. It's a complete image of the LVS results. An API is
available to access the elements of the LVS database.

 Labels: "Labels" are text objects drawn in a layout to mark certain locations on certain
layers with a text. Typically, labels are used to assign net names - if included in the
connectivity, nets formed from such labels get a name according to the text string of the
label.

KLayout 0.26 (2019-08-30 57cee792) [master]

KLayout Documentation (Qt 4): Main Index » KLayout User Manual » Layout vs. Schematic
(LVS) » LVS Introduction

LVS Introduction

 LVS introduction
 Sample LVS script
 Anatomy of the LVS script
 Inverter with tie-down diodes

LVS introduction

For introducing the LVS feature we consider the most simple CMOS structure there is: the two-
transistor inverter.

Layout

The inverter consists of two MOS transistors. A single transistor is made from an active region (a
rectangle on the ACTIVE layer) and a gate (POLY layer) crossing the active region. The gate
forms the channel from source to drain regions (left and right of gate). Contacts (CONTACT)
provide connections from the first metal layer (METAL1) to the gate polysilicon (POLY) and to
source/drain regions (where over ACTIVE). Via holes (VIA1) provide connections from the first
(METAL1) to the second metal (METAL2). Finally, specific devices are formed by the
source/drain implants which is n+ (NPLUS marker) for NMOS and p+ (PPLUS marker) for
PMOS devices. PMOS devices sit in a n implant region (n-well) which forms the p-channel
region. NMOS devices are built over substrate which is p doped to supply the n-channel region.

The actual layout is made as a standard cell. Multiple standard cells can be arrayed horizontally
in a row. The power rails are formed in the second metal for VDD at the top and VSS at the
bottom. The n-well extends over the top of the cell and is supposed to connect to neighbor well
regions:

Schematic

For the inverter we can draw a schematic in a simplified form (left) and in a more realistic form
(right) which also includes the bulk potentials of the transistors. It is important to keep the bulk
of of the transistors at a defined potential to avoid latch-up. Hence we need pins for these
terminals too. This makes a total of six pins: for input (IN) and output (OUT), for the power
(VDD, VSS) and the two bulk potentials (NWELL, SUBSTRATE):

For LVS we first need a reference schematic. This is the SPICE netlist corresponding to the
schematic with the bulk connections:

* Simple CMOS inverer circuit (inv.cir)
.SUBCKT INVERTER VSS IN OUT NWELL SUBSTRATE VDD
Mp VDD IN OUT NWELL PMOS W=1.5U L=0.25U
Mn OUT IN VSS SUBSTRATE NMOS W=0.9U L=0.25U
.ENDS

The circuit we are going to analyze is a cell which is embedded in bigger circuits. Hence it
makes sense to describe the inverter as a subcircuit. If the netlist consists of a subcircuit only,
KLayout will consider this circuit. Otherwise it will consider the global definitions as the main
circuit. In the latter case, pins cannot be defined while with subcircuits pins can be listed as given
names too.

Sample LVS script

The LVS script to compare the layout above and the schematic now is this (for more details see
LVS Reference):

LVS script (demo technology, KLayout manual)

Preamble:

deep

Reports generated:

report_lvs # LVS report window

Drawing layers:

nwell = input(1, 0)
active = input(2, 0)
pplus = input(3, 0)
nplus = input(4, 0)
poly = input(5, 0)
contact = input(6, 0)
metal1 = input(7, 0)
metal1_lbl = labels(7, 1)
via1 = input(8, 0)
metal2 = input(9, 0)
metal2_lbl = labels(9, 1)

Bulk layer for terminal provisioning:

bulk = polygon_layer

Computed layers:

active_in_nwell = active & nwell
pactive = active_in_nwell & pplus
pgate = pactive & poly
psd = pactive - pgate

active_outside_nwell = active - nwell
nactive = active_outside_nwell & nplus
ngate = nactive & poly
nsd = nactive - ngate

Device extraction

PMOS transistor device extraction
extract_devices(mos4("PMOS"), { "SD" => psd, "G" => pgate, "W" => nwell,
 "tS" => psd, "tD" => psd, "tG" => poly, "tW"
=> nwell })

NMOS transistor device extraction
extract_devices(mos4("NMOS"), { "SD" => nsd, "G" => ngate, "W" => bulk,
 "tS" => nsd, "tD" => nsd, "tG" => poly, "tW"
=> bulk })

Define connectivity for netlist extraction

Inter-layer
connect(psd, contact)
connect(nsd, contact)

connect(poly, contact)
connect(contact, metal1)
connect(metal1, metal1_lbl) # attaches labels
connect(metal1, via1)
connect(via1, metal2)
connect(metal2, metal2_lbl) # attaches labels

Global
connect_global(bulk, "SUBSTRATE")
connect_global(nwell, "NWELL")

Compare section

schematic("inv.cir")

compare

For trying this script, load the inverter layout from "testdata/lvs/inv.oas" (KLayout sources) and
open the Macro Editor IDE (Tools/Macro Development). Create a new script in the LVS tab and
paste the text from above. Then run the script. The LVS report browser will open and show
everything in green. This indicates the compare was successful:

Anatomy of the LVS script

The first and important statement of a LVS script should be the "deep" switch which enables
hierarchical mode. Without hierarchical mode, the netlist is produced without subcircuits. Such

flat netlist are inefficient to compare and hard to debug. Hence we switch to hierarchical mode
with the "deep" statement (see deep):

deep

We also instruct LVS to create a report and open it in the report browser once LVS has finished:

report_lvs

We can also write the report to a file if we want (see report_lvs):

report_lvs("inv.lvsdb")

The next step is the declaration of the input layers:

nwell = input(1, 0)
active = input(2, 0)
pplus = input(3, 0)
nplus = input(4, 0)
poly = input(5, 0)
contact = input(6, 0)
metal1 = input(7, 0)
metal1_lbl = labels(7, 1)
via1 = input(8, 0)
metal2 = input(9, 0)
metal2_lbl = labels(9, 1)

"input" and "labels" are functions which pull layout layers from the layout source (the layout
source is - as in DRC - usually the current layout). While "input" pulls all kind of shapes,
"labels" will only pull texts. We use "labels" to pull labels for first metal from GDS layer 7,
datatype 1 and labels for second metal from GDS layer 9, datatype 1. For details see input and
labels.

In addition, we create an empty layer which we will need to represent the "substrate". This layer
does not constitute a closed region but rather a heap of shapes which will all connect to the same
(global) net later:

bulk = polygon_layer

The names we give to the layers are actually variables which represent a layout layer. As in
DRC, we can use these to compute some derived layers:

active_in_nwell = active & nwell
pactive = active_in_nwell & pplus
pgate = pactive & poly
psd = pactive - pgate

active_outside_nwell = active - nwell
nactive = active_outside_nwell & nplus
ngate = nactive & poly
nsd = nactive - ngate

These formulas are all boolean operations. "&" is the boolean AND operation and "-" is the
boolean NOT. Hence "active_in_nwell" is the part of "ACTIVE" which is inside "NWELL"
while "active_outside_nwell" is the part of "ACTIVE" outside it. The main purpose of these
formulas is to separate source and drain regions but cutting away the gate area from the
"ACTIVE" area. This renders "psd" and "nsd" (PMOS and NMOS source/drain). The boolean
operations are part of the DRC feature set. For more functions and detailed descriptions see DRC
Reference: Layer Object.

We also separate gate regions for PMOS (pgate) and NMOS transistors (ngate) and with these
ingredients we are ready to move to device extraction:

extract_devices(mos4("PMOS"), { "SD" => psd, "G" => pgate, "W" => nwell,
 "tS" => psd, "tD" => psd, "tG" => poly, "tW"
=> nwell })

The first argument of "extract_devices" (see extract_devices) is the device extractor. The device
extractor is an object responsible for the actual extraction of a certain device type. In our case the
template is "MOS4" and we want to produce a new class of devices called "PMOS".
mos4("PMOS") will create a new device extractor which produces devices of "MOS4" kind with
class name "PMOS".

The second argument is a hash of layer symbols and layers. Each device extractor type defines a
specific set of layer symbols. For all devices, two sets of the layers are required: the input layers
which the extractor employs to recognize the device and the terminal connection layers which
the extractor uses to place "magic" terminal shapes on. These polygons will create connections to
the devices produced by the extractor.

The input layers are designated by upper-case letters, while the terminal output layers are
designated with a lower-case "t" followed by the terminal name. The specification above is
complete, but because "tW" defaults to "W" and "tS" and "tD" default to "SD", it can be written
shorter as:

extract_devices(mos4("PMOS"), { "SD" => psd, "G" => pgate, "W" => nwell, "tG"
=> poly })

We also need an extractor for the "NMOS" class. It's built exactly the same way than the PMOS
extractor:

extract_devices(mos4("NMOS"), { "SD" => nsd, "G" => ngate, "W" => bulk,
 "tS" => nsd, "tD" => nsd, "tG" => poly, "tW"
=> bulk })

Having the devices is already half the work. We now need to supply the connectivity (see
connect):

connect(psd, contact)
connect(nsd, contact)
connect(poly, contact)

connect(contact, metal1)
connect(metal1, metal1_lbl) # attaches labels
connect(metal1, via1)
connect(via1, metal2)
connect(metal2, metal2_lbl) # attaches labels

These statements will connect PMOS source/drain regions (psd) with CONTACT regions
(contact), NMOS source/drain regions (nsd) also with CONTACT. POLY will also connect to
CONTACT. Remember that we specified psd, nsd and poly as terminal outputs "tS", "TD" and
"tG" in the device extraction. By including these layers into the connectivity, we establish device
terminal connections to the nets formed by these layers.

The metal stack is trivial (CONTACT to METAL1, METAL1 to METAL2 via VIA1). The
labels are attached to nets simply by including the label layers into the connectivity. The net
extractor will pull the text strings from these connected text objects and assign them to the nets
as net names.

Furthermore, two special connections need to be made (see connect_global):

connect_global(bulk, "SUBSTRATE")
connect_global(nwell, "NWELL")

Global connections basically say that all shapes on a certain layer belong to the same net - even
if they do not touch - and this net is always shared between circuits and subcircuits. This is
certainly true for the bulk layer, but not necessarily for the NWELL layer. Isolated NWELL
patches do not connect together. We will correct this small error later when it comes to
extraction with tie-down diodes.

We have now provided all the essential inputs for the netlist formation. We only have to specify
the reference netlist:

schematic("inv.cir")

Finally after having set this up, we can trigger the compare step:

compare

If we insert a netlist write statement (see target_netlist) at the beginning of the script, we can
obtain a SPICE version of the extracted netlist:

SPICE output statement (insert at beginning of script):
target_netlist("inv_extracted.cir", write_spice, "Extracted by KLayout")

Since we have a LVS match, the extracted netlist is pretty much the same than the reference
netlist, but enhanced by some geometrical parameters such as source and drain area and
perimeter:

* Extracted by KLayout

* cell INVERTER
.SUBCKT INVERTER
* net 1 IN
* net 2 VSS
* net 3 VDD
* net 4 OUT
* net 5 NWELL
* net 6 SUBSTRATE
* device instance $1 r0 *1 1.025,4.95 PMOS
M$1 3 1 4 5 PMOS L=0.25U W=1.5U AS=0.675P AD=0.675P PS=3.9U PD=3.9U
* device instance $2 r0 *1 1.025,0.65 NMOS
M$2 2 1 4 6 NMOS L=0.25U W=0.9U AS=0.405P AD=0.405P PS=2.7U PD=2.7U
.ENDS INVERTER

Inverter with tie-down diodes

The inverter cell above is not useful by itself as it lacks features to tie the n well and the substrate
to a defined potential. This is achieved with tie-down diodes.

Tie-down diodes are contacts over active regions. The active regions are implanted p+ on the
substrate and n+ within the n well (the opposite implant type of transistors). With this doping
profile, the metal contact won't form a Schottky barrier to the Silicon bulk and behave like an
ohmic contact. So in fact, the "diode" isn't a real diode in the sense of a rectifier.

The modified layout is this one:

The corresponding schematic is this:

With this circuit, the n well is always at VDD potential and the substrate is tied at VSS:

* Simple CMOS inverer circuit
.SUBCKT INVERTER_WITH_DIODES VSS IN OUT VDD
Mp VDD IN OUT VDD PMOS W=1.5U L=0.25U
Mn OUT IN VSS VSS NMOS W=0.9U L=0.25U
.ENDS

The LVS script is slightly longer when extraction of tie-down diodes is included:

LVS script (demo technology, KLayout manual)

Preamble:

deep

Reports generated:

report_lvs # LVS report window

Drawing layers:

nwell = input(1, 0)
active = input(2, 0)
pplus = input(3, 0)
nplus = input(4, 0)
poly = input(5, 0)
contact = input(6, 0)
metal1 = input(7, 0)
metal1_lbl = labels(7, 1)
via1 = input(8, 0)
metal2 = input(9, 0)
metal2_lbl = labels(9, 1)

Bulk layer for terminal provisioning

bulk = polygon_layer

Computed layers

active_in_nwell = active & nwell
pactive = active_in_nwell & pplus
pgate = pactive & poly
psd = pactive - pgate
ntie = active_in_nwell & nplus

active_outside_nwell = active - nwell
nactive = active_outside_nwell & nplus
ngate = nactive & poly
nsd = nactive - ngate
ptie = active_outside_nwell & pplus

Device extraction

PMOS transistor device extraction
extract_devices(mos4("PMOS"), { "SD" => psd, "G" => pgate, "W" => nwell,
 "tS" => psd, "tD" => psd, "tG" => poly, "tW"
=> nwell })

NMOS transistor device extraction
extract_devices(mos4("NMOS"), { "SD" => nsd, "G" => ngate, "W" => bulk,
 "tS" => nsd, "tD" => nsd, "tG" => poly, "tW"
=> bulk })

Define connectivity for netlist extraction

Inter-layer
connect(psd, contact)
connect(nsd, contact)
connect(poly, contact)
connect(ntie, contact)
connect(nwell, ntie)
connect(ptie, contact)
connect(contact, metal1)
connect(metal1, metal1_lbl) # attaches labels
connect(metal1, via1)
connect(via1, metal2)
connect(metal2, metal2_lbl) # attaches labels

Global
connect_global(bulk, "SUBSTRATE")
connect_global(ptie, "SUBSTRATE")

Compare section

schematic("inv2.cir")

compare

The main difference is the computation of the regions for n tie-down (inside n well) and p tie-
down. This is pretty straightforward:

ntie = active_in_nwell & nplus
ptie = active_outside_nwell & pplus

Device extraction does not change, but we need to include the tie-down regions into the
connectivity:

connect(ntie, contact)
connect(nwell, ntie)
connect(ptie, contact)

By connecting ntie to contact and nwell, we readily establish a connection to n well which
behaves then like a conductive layer (although the resistance will be very high). Remember the
the device extractors for PMOS will put the bulk terminals on nwell too, so the transistor is
automatically connected to the nwell net.

ptie cannot be simply connected as there are no polygons for "substrate". But we can include ptie
in the global connections:

connect_global(bulk, "SUBSTRATE")
connect_global(ptie, "SUBSTRATE")

nwell is no longer included in the global connections, hence we do no longer and incorrectly
consider all nwell regions to be connected.

The extracted netlist shows the bulk terminals of NMOS and PMOS connected to source (drain
and source are equivalent):

* Extracted by KLayout

* cell INVERTER_WITH_DIODES
.SUBCKT INVERTER_WITH_DIODES
* net 1 IN
* net 2 VDD
* net 3 OUT
* net 4 VSS
* device instance $1 r0 *1 1.025,4.95 PMOS
M$1 2 1 3 2 PMOS L=0.25U W=1.5U AS=0.675P AD=0.675P PS=3.9U PD=3.9U
* device instance $2 r0 *1 1.025,0.65 NMOS

M$2 4 1 3 4 NMOS L=0.25U W=0.9U AS=0.405P AD=0.405P PS=2.7U PD=2.7U
.ENDS INVERTER_WITH_DIODES

KLayout Documentation (Qt 4): Main Index » KLayout User Manual » Layout vs. Schematic
(LVS) » LVS Devices

LVS Devices

Device extractors and device classes

KLayout provides two concepts for handling device variety:

Device classes are device categories. There are general categories such as resistors or MOS
transistors. Specific categories can be created to represent specific incarnations - e.g. NMOS and
PMOS devices. Device classes also determine how devices combine.

Device classes are documented here: LVS Device Classes.

Device extractors are the actual worker objects that analyze layout and produce devices. As for
device classes, there are general device extractors. Each device extractor produces devices from
a specific class.

Device extractors are documented here: LVS Devices Extractors.

KLayout 0.26 (2019-08-30 57cee792) [master]

KLayout Documentation (Qt 4): Main Index » KLayout User Manual » Layout vs. Schematic
(LVS) » LVS Device Classes

LVS Device Classes

 Resistor
 Resistor with bulk terminal
 Capacitor
 Capacitor with bulk terminal
 Diode

 MOS transistor
 MOS transistor with bulk
 Bipolar transistor
 Bipolar transistor with substrate

KLayout implements a variety of standard device classes. These device classes are the basis for
forming particular incarnations of device classes. For example, the MOS4 class is the basis for
the specific device classes for NMOS and PMOS transistors.

Resistor

The plain resistor has two terminals, A and B. It features the following parameters:

 R: The resistance value in Ohm
 L: The length in µm
 W: The width in µm
 A: The area of the resistor area in µm²
 P: The perimeter of the resistor area in µm

Resistors can combine in parallel or serial fashion.

In SPICE, plain resistors are represented by the "R" element. The API class is
DeviceClassResistor.

Resistor with bulk terminal

The resistor with bulk terminal is an extension of the plain resistor. If has the same parameters,
but one additional terminal (W) which connects to the area the resistor sits in (e.g. well or
substrate).

Resistors with bulk can combine in parallel or serial fashion if their bulk terminals are connected
to the same net.

The API class of the resistor with bulk is DeviceClassResistorWithBulk.

Capacitor

The plain capacitor has two terminals, A and B. It features the following parameters:

 C: The capacitance value in Farad
 A: The area of the capacitor area in µm²

 P: The perimeter of the capacitor area in µm

In SPICE, plain capacitors are represented by the "C" element. The API class is
DeviceClassCapacitor.

Capacitor with bulk terminal

The capacitor with bulk terminal is an extension of the plain capacitor. If has the same
parameters, but one additional terminal (W) which connects to the area the capacitor sits in (e.g.
well or substrate).

Capacitors with bulk can combine in parallel or serial fashion if their bulk terminals are
connected to the same net.

The API class of the capacitor with bulk is DeviceClassCapacitorWithBulk.

Diode

Diodes have two terminals, A and C for anode and cathode. Diodes feature the following
parameters:

 A: The area of the diode in µm²
 P: The perimeter of the diode in µm

Diodes combine in parallel (A to A and C to C). In this case their areas and perimeters will add.

In SPICE, diodes are represented by the "D" element using the device class name as the model
name. The API class is DeviceClassDiode.

MOS transistor

Three-terminal MOS transistors have terminals S, G and D for source, gate and drain. S and D
are commutable. They feature the following parameters:

 W: The gate width in µm
 L: The gate (channel) length in µm
 AS: The source area in µm²
 PS: The source perimeter in µm
 AD: The drain area in µm²
 PD: The drain perimeter in µm

MOS3 transistors combine in parallel when the source/drains and gates are connected and their
gate lengths are identical. In this case their widths, areas and perimeters will add.

MOS transistor with bulk

The API class of the three-terminal MOS transistor is DeviceClassMOS3.

The four-terminal transistor is an extension of the three-terminal one and offers an additional
bulk terminal (B). It is probably the most prominent transistor device as the four-terminal version
is compatible with the SPICE "M" element.

MOS transistors with bulk can combine in parallel the same way the three-terminal versions do if
their bulk terminals are connected to the same net.

In SPICE, MOS4 devices are represented by the "M" element with the device class name as the
model name. The API class is DeviceClassDiode.

Bipolar transistor

The three-terminal bipolar transistor can be either NPN or PNP type. In KLayout, this device
type can represent both lateral and vertical types. The parameters are:

 AE: The emitter area in µm²
 PE: The emitter perimeter in µm

 NE: The emitter count (initially 1)
 AB: The base area in µm²
 PB: The base perimeter in µm
 AC: The collector area in µm²
 PC: The collector perimeter in µm

Upon extraction, multi-emitter versions are extracted as multiple devices - one for each emitter
area - and NE = 1. Bipolar transistors combine when in parallel. In this case, their emitter
parameters AE, PE and NE are added.

In SPICE, BJT3 devices are represented by the "Q" element with the device class name as the
model name. The API class is DeviceClassBJT3.

Bipolar transistor with substrate

The four-terminal transistor is an extension of the three-terminal one and offers an additional
bulk terminal (S).

Bipolar transistors with bulk can combine in parallel the same way the three-terminal versions do
if their bulk terminals are connected to the same net.

In SPICE, BJT4 devices are represented by the "Q" element with four nodes and the device class
name as the model name. The API class is DeviceClassBJT4.

KLayout 0.26 (2019-08-30 57cee792) [master]

KLayout Documentation (Qt 4): Main Index » KLayout User Manual » Layout vs. Schematic
(LVS) » LVS Devices Extractors

LVS Devices Extractors

 Resistor extractors (resistor and resistor_with_bulk)
 Capacitor extractors (capacitor and capacitor_with_bulk)
 Diode extractor (diode)
 MOS transistor extractor (mos3 and mos4)
 Bipolar transistor extractor (bjt3 and bjt4)

Device extractors and the actual "workers" of the device extraction process. KLayout comes with
a variety of pre-built device extractors. It's possible to implement custom device extractors in the
framework of LVS scripts (speaking Ruby).

Resistor extractors (resistor and resistor_with_bulk)

The resistor extractor assumes a layout which consists of a resistor "wire" and two caps
(contacts). The wire is specified with the layer symbol "R", the caps are specified with the layer
symbol "C":

The extractor will compute the resistance from the number of squares and the sheet resistance.
The sheet resistance needs to be given when creating the extractor:

sheet_rho = 0.5
model_name = "RES"
extract_devices(resistor(model_name, sheet_rho), { "R" => res_layer, "C" =>
cap_layer })

The plain resistor offers two terminals which it outputs on "tA" and "tB" terminal layers. If "tA"
or "tB" is not specified, "A" or "B" terminals will be written on the "C" layer. respectively.

For the resistor with bulk, the wire area is output on the "tW" terminal layer as the "W" terminal:

Capacitor extractors (capacitor and capacitor_with_bulk)

Capacitors are assumed to consist of two "plates" (vertical capacitors). The plates are on layers
P1 and P2. The capacitor is extracted from the area where these two layers overlap.

The extractor will compute the capacitance from the area of the overlap and the capacitance per
area (F/µm²) value.

area_cap = 1.5e-15
model_name = "CAP"
extract_devices(capacitor(model_name, area_cap), { "P1" => metal1, "P2" =>
metal2 })

The plain capacitor offers two terminals which it outputs on "tA" and "tB" terminal layers. If
"tA" or "tB" is not specified, "A" or "B" terminals will be written on the "P1" and "P2" layers
respectively.

For the capacitor with bulk, the capacitor area is output on the "tW" terminal layer as the "W"
terminal:

Diode extractor (diode)

Diodes are assumed to consist of two vertical implant regions (wells, diffusion). One of the
regions is p type ("P" layer) and the other "n" type ("N" layer). These layers also form the anode
(p) and cathode (n) of the diode.

The extractor will compute the capacitance from the area of the overlap and the capacitance per
area (F/µm²) value.

model_name = "DIODE"
extract_devices(diode(model_name), { "P" => pplus, "N" => nwell })

The diode offers two terminals which it outputs on "tA" and "tC" terminal layers. If "tA" is not
specified, "A" terminals will be written on the "P" layer. If "tC" is not specified, "C" terminals
will be written on the "N" layer.

MOS transistor extractor (mos3 and mos4)

MOS transistors are recognized by their gate ("G" input) and source/drain ("SD" input) regions.
Source and drain needs to be separated from the gate shape. The touching edges of gate and
source/drain regions define the width of the device, the perpendicular dimension the gate length.
Because the separation of source/drain, the computation of gates and the separation of these for
NMOS and PMOS devices, the "G" and "SD" layers are usually derived layers. As these usually

won't participate in the connectivity, it's important to specify the "tS", "tD", "tG" and "tB" (for
MOS4) layers explicitly and redirect the terminal shapes to layers that really participate in
connections.

model_name = "PMOS"
extract_devices(mos4(model_name), { "SD" => (active - poly) & pplus, "G" =>
(active & poly), "W" => nwell,
 "tS" => active, "tD" => active, "tG" =>
poly, "tB" => nwell })

The MOS3 device produces three terminals which it outputs on "tS", "tG" and "tD" terminal
layers (source, gate and drain respectively):

The MOS4 device offers one more terminal (bulk) which it writes on "tB".

Bipolar transistor extractor (bjt3 and bjt4)

There are basically two kind of bipolar transistors: vertical and lateral ones.

Lateral transistors are formed by implant or diffusion wells creating a intermittent n/p structure
on the wafer. The basic recognition region is the base region. The collector and emitter regions
are inside or overlapping the base region and use the opposite doping than base: if the base
region is n doped, then collector and emitter regions have to be p doped. The structure then
forms a PNP transistor. KLayout recognizes lateral transistors when the base is partially covered
by the collector region. For lateral transistors, the emitter is defined by the emitter region inside
base. The collector region is defined by collector inside base and outside emitter.

(lateral NPN transistor)

Vertical transistors are formed by a stack of n/p wells. Sometimes vertical transistors are formed
as parasitic devices in standard CMOS processes. A PNP transistor can be formed by taking the

collector as the substrate, nwell for the base and pplus implant for the emitter. KLayout
recognizes a vertical bipolar transistor when the base is covered entirely by the collector or has
no collector at all - this means the collector region can be empty (e.g. bulk).

(vertical NPN transistor)

In both cases, there can be multiple emitter regions inside a base island. In this case, one
transistor is extracted for each emitter region.

Vertical bipolar transistors

Vertical bipolar transistors take their inputs from "B" (base), "C" (collector) and "E" (emitter).
"C" is optional:

Especially for bipolar devices it's important to device useful terminal output layers. Typically,
the wells and diffusion areas will be connected through "contact", (not considering the Schottky
diodes for now). So it's a good idea to send the terminals to the contact layer:

model_name = "PNP"
extract_devices(bjt3(model_name), { "C" => collector, "B" => base, "E" =>
emitter,
 "tC" => contact, "tB" => contact, "tE" =>
contact })

The BJT3 device produces three terminals which it outputs on "tC", "tB" and "tE" terminal layers
(collector, base and emitter respectively):

If the collector region is empty (e.g. p substrate), the base shape is copied to the "tC" output layer
for the collector terminal.

The BJT4 device offers one more terminal (substrate) which it writes on "tS". "tS" is a copy of
the emitter shape but connected to the substrate terminal:

Lateral bipolar transistors

Lateral bipolar transistors also take their inputs from "B" (base), "C" (collector) and "E"
(emitter). For lateral transistors, "C" is not optional and must not fully cover the base region.
Apart from this, the use model for BJT3 and BJT4 extractors is identical for vertical and lateral
transistors.

A typical lateral transistor is formed by a collector ring and emitter island inside the base region:

The terminals produced by the bipolar transistor extractor in the lateral case are the same than for
the vertical case, but with a different geometry:

Again, for BJT4, "tS" is a copy of the emitter shape but connected to the substrate terminal:

KLayout 0.26 (2019-08-30 57cee792) [master]

KLayout Documentation (Qt 4): Main Index » KLayout User Manual » Layout vs. Schematic
(LVS) » LVS Input/Output

LVS Input/Output

 Writing netlists
 Reading netlists
 Layout-to-Netlist database/report
 Layout-vs-Schematic database/report

LVS (and also DRC as far as netlist extraction is concerned) provides interfaces to write and read
netlists/schematics, annotated layout and LVS results. There are three major categories of I/O:

 Netlist: this is the plain circuit information. With subcircuit this forms a hierarchical
netlist. Currently, the format available to import and export netlists is a certain SPICE
netlist flavor. It's possible to customize the reading and writing process to achieve some
flexibility.

 Layout-to-netlist database (L2N DB): also called extracted netlist or annotated layout.
This is the netlist taken from the original layout together with the corresponding shapes.
This database allows reconstructing a net geometrically as far as non-device shapes are
involved. Devices are abstracted by their terminal geometries.

 LVS result database (LVS DB): this is the L2N database plus the reference netlist and a
"cross reference": a list of paired circuits, nets, devices, pins and subcircuits and status
information. The cross-reference is both a lookup table and a debugging aid.

Writing netlists

You can write a netlist file to supply netlists for (functional) simulators for example. Within LVS
scripts, the global "target_netlist" statement triggers writing of a netlist (see target_netlist for
details).

target_netlist("output.cir", write_spice, "Created by KLayout")

This statement can basically appear anywhere in the LVS script. The netlist will written after the
script has executed successfully. The first argument is the file's path (by default relative to the
original layout file). The second argument is the "writer". "write_spice" creates a netlist writer
writing SPICE format with a limited degree of flexbility. See below for customizing the writer.
The third argument finally is an (optional) comment which will be written into the netlist as a
header.

The "write_spice" configuration function has two options:

write_spice(use_net_names, with_comments)

Both options are boolean values. If true and present, the first option will make the writer use the
real net's names instead of numerical IDs. If true and present, "with_comments" will embed
debug comments into the netlist showing instance locations, pin names etc.

Further customization can be achieved by providing an explicit SPICE writer with a delegate
(see NetlistSpiceWriterDelegate). For doing so, subclass NetlistSpiceWriterDelegate and
reimplement one or several of the methods provided for reimplementation. Those are
NetlistSpiceWriterDelegate#write_device, NetlistSpiceWriterDelegate#write_device_intro and
NetlistSpiceWriterDelegate#write_header.

Here is an example that supplied subcircuit models rather than device elements:

Write extracted netlist to extracted.cir using a special
writer delegate

This delegate makes the writer emit subcicuit calls instead of
standard elements for the devices
class SubcircuitModels < RBA::NetlistSpiceWriterDelegate

 def write_header
 emit_line(".INCLUDE 'models.cir'")
 end

 def write_device(device)
 str = "X" + device.expanded_name
 device_class = device.device_class

 device_class.terminal_definitions.each do |td|
 str += " " + net_to_string(device.net_for_terminal(td.id))
 end
 str += " " + device_class.name
 str += " PARAMS:"
 device_class.parameter_definitions.each do |pd|
 str += " " + pd.name + ("=%.12g" % device.parameter(pd.id))
 end
 emit_line(str)
 end

end

Prepare a writer using the new delegate
custom_spice_writer = RBA::NetlistSpiceWriter::new(SubcircuitModels::new)
custom_spice_writer.use_net_names= true
custom_spice_writer.with_comments = false

The declaration of netlist production using the new custom writer
target_netlist("extracted.cir", custom_spice_writer, "Extracted by KLayout")

This script will produce the following netlist for the simple inverter from the LVS introduction.
Instead of printing "M" elements - which is the default - subcircuit calls are produced. This
allows putting more elaborate models into subcircuits. The device class name addresses these
model subcircuits:

* Extracted by KLayout
.INCLUDE 'models.cir'

.SUBCKT INVERTER
X$1 VDD IN OUT NWELL PMOS PARAMS: L=0.25 W=1.5 AS=0.675 AD=0.675 PS=3.9
PD=3.9
X$2 VSS IN OUT SUBSTRATE NMOS PARAMS: L=0.25 W=0.9 AS=0.405 AD=0.405 PS=2.7
+ PD=2.7
.ENDS INVERTER

Netlists can be written directly from the netlist object. Within the script, the netlist object can be
obtained with the netlist function. This function will first trigger a netlist extraction unless this
was done already and return a Netlist object. Use Netlist#write to write this netlist object then.
Unlike "target_netlist", this method is executed immediately and this way, a single netlist can be
written to multiple files in different flavours.

Reading netlists

The main use case for reading netlists is for comparison in LVS. Reference netlists are read with
the "schematic" function (see schematic):

schematic("inverter.cir")

Currently SPICE is understood with some limitations:

 Parametrized circuits are not permitted except for device subcircuits (with a delegate)
 Only a subset of elements is implemented by default. These are "M" (gives "MOS4"

device classes), "Q" (gives BJT3 or BJT4 device classes), "R" (gives Resistor device
classes), "C" (gives Capacitor device classes) and "D" (gives diode device classes).

As for the SPICE reader, a delegate can be provided to customize the reader. For doing so,
subclass the NetlistSpiceReaderDelegate class and reimplement the methods provided. These
are: NetlistSpiceReaderDelegate#wants_subcircuit, NetlistSpiceReaderDelegate#element,
NetlistSpiceReaderDelegate#finish and NetlistSpiceReaderDelegate#start

This example customizes a reader to pull MOS devices from subcircuit models rather than from
"M" elements. Basically this customization does the opposite part of the writer customization
before (only for MOS devices).

Provides a SPICE netlist reader delegate which turns
some subcircuit models (for subcircuits NMOS and PMOS)
into devices

class SubcircuitModelsReader < RBA::NetlistSpiceReaderDelegate

 # says we want to catch these subcircuits as devices
 def wants_subcircuit(name)
 name == "NMOS" || name == "PMOS"
 end

 # translate the element
 def element(circuit, el, name, model, value, nets, params)

 if el != "X"
 # all other elements are left to the standard implementation
 return super
 end

 if nets.size != 4
 error("Subcircuit #{model} needs four nodes")
 end

 # provide a device class
 cls = circuit.netlist.device_class_by_name(model)
 if ! cls
 cls = RBA::DeviceClassMOS4Transistor::new
 cls.name = model
 circuit.netlist.add(cls)
 end

 # create a device
 device = circuit.create_device(cls, name)

 # and configure the device
 ["S", "G", "D", "B"].each_with_index do |t,index|
 device.connect_terminal(t, nets[index])
 end
 params.each do |p,value|
 device.set_parameter(p, value)

 end

 end

end

Instantiate a reader using the new delegate
reader = RBA::NetlistSpiceReader::new(SubcircuitModelsReader::new)

Import the schematic with this reader
schematic("inv_xmodels.cir", reader)

Layout-to-Netlist database/report

The layout-to-netlist database (L2N DB) is written using the global report_netlist function. This
function can be put anywhere in the script. Writing will happen after the script executed
successfully:

report_netlist("extracted.l2n")

Without the filename, only the netlist browser will be opened but no file will be written. The
layout-to-netlist database is a KLayout-specific format. It contains the netlist information plus
the shape and instance information from the layout. L2N databases can be read into the netlist
browser for example. Hence exchange of extracted netlists is possible.

Layout-vs-Schematic database/report

The Layout-vs-schematic database (LVS DB) is written using the global report_lvs function.
This function can be put anywhere in the script. Writing will happen after the script executed
successfully:

report_lvs("extracted.lvsdb")

Without the filename, only the netlist browser will be opened but no file will be written. The
LVS database is a KLayout-specific format. It contains the extracted netlist information, the
reference netlist and the cross-reference table. LVS databases can be read into the netlist browser
for example. Hence exchange of LVS reports is possible.

KLayout 0.26 (2019-08-30 57cee792) [master]

KLayout Documentation (Qt 4): Main Index » KLayout User Manual » Layout vs. Schematic
(LVS) » LVS Connectivity

LVS Connectivity

 Intra- and inter-layer connections
 Global connections
 Implicit connections

Intra- and inter-layer connections

The connectivity setup of a LVS script determines how the connections are made. Connections
are usually made through conductive materials such as Aluminium or Copper. The polygons
representing such a material form a connection. Connections can be made across multiple
polygons - touching polygons form connected islands of conductive material. This "intra-layer"
connectivity is implicit: in LVS scripts connections are always made between polygons on the
same layer.

Connections often cross layers. A via for example is a hole in the insulator sheet which connects
two metal layers. This connection is modelled using a "connect" statement (see connect):

connect(layer1, layer2)

A connect statement will specify an electrical connection when the polygons from layer1 and
layer2 overlap. layer1 and layer2 are original or derived layers. "connect" statements should
appear in the script before the netlist is required - i.e. before "compare" or any other netlist-
related statement inside the LVS script. The order of the connect statements is not relevant.
Neigther is the order of the arguments in "connect": connections are always bidirectional.

This is an example for a vertical cross section through a simple 3-metal layer stack with the
corresponding "connect" statements:

Labels can be included in the connectivity too. Typically labels are placed on metal layers. If the
labels are drawn on the same layer than the metal shapes they are automatically included when
using "input" to read the layer. If only labels shall be read from a layer, use "labels" (see labels).

To attach labels to metal layers, simply connect the label and metal layers:

metal1_labels = labels(10, 0)
metal1 = input(11, 0)
via1 = input(12, 0)
metal2_labels = labels(13, 0)
metal2 = input(14, 0)

connect(metal1, metal1_labels)
connect(metal1, via1)
connect(via1, metal2)
connect(metal2, metal2_labels)

If labels are connected to metal layers, their text strings will be used to assign net names to the
resulting nets. Ideally, one net is labelled with a single text or with texts with the same text
string. In this case, the net name will be non-ambiguous. If multiple labels with different strings
are present on a net, the net name will be made from a combination of these names.

Global connections

KLayout supports implicit connections made across all polygons on a layer, regardless whether
they connect or not. A typical case for such a connection is the substrate (aka "bulk"). This
connection represents the (lightly conductive) substrate material. There is no polygon
representing the wafer. Instead, a layer is defined which makes a global connection with
"connect_global" (see connect_global):

connect_global(bulk, "VSS")

The arguments to "connect_global" is the globally connected layer and the name of the global net
to create. The function will make all shapes on "bulk" being connected to a single net "VSS".
Every circuit will at least have the "VSS" net. In addition, each circuit will be given a pin called
"VSS" which propagates this net to parent circuits.

Implicit connections

Implicit connections can be useful to supply preliminary connections which are supposed to be
created higher up in the hierarchy: Imagine a circuit which a big power net for example. When
the layout is made, the power net may not be completely connected yet because the plan is to
connect all parts of this power net later when the cell is integrated. In this situation, the subcircuit
cell itself won't be LVS clean because the power net is a single net schematic-wise, but exist as
multiple nets layout-wise. This prevents bottom-up verification - a very useful technique to
achieve LVS clean layouts.

To allow verification of such a cell, "implicit connections" can be made by giving the net parts
the same name through labels and assume these parts are connected: for example to specify
implicit connections between all parts of a "VDD" net, place a label "VDD" on each part and
include the following statement in the script:

connect_implicit("VDD")

"connect_implicit" (see connect_implicit) can be present multiple times to make many of such
connections. Implicit connections will only be made on the topmost circuit to prevent false
verification results. Be careful not to use this option in a final verification of a full design as
power net opens may pass unnoticed.

KLayout 0.26 (2019-08-30 57cee792) [master]

KLayout Documentation (Qt 4): Main Index » KLayout User Manual » Layout vs. Schematic
(LVS) » LVS Compare

LVS Compare

 Net equivalence hint
 Circuit equivalence hint
 Device class equivalence hint
 Pin swapping
 Capacitor and resistor elimination
 How the compare algorithm works

The actual compare step is rather simple. Provided you have set up the extraction
(extract_devices), the connectivity (connect, connect_global, connect_implicit) and provided a
reference netlist (schematic), this function will perform the actual compare:

compare

This method (compare will extract the netlist (if not already done) and compare it against the
schematic. It returns true on success and false otherwise, in case you like to take specific actions
on success or failure.

The compare step can configured by providing hints.

Net equivalence hint

It can be useful to declare two nets as identical, at least for debugging. The compare algorithm
will then be able to deduce the real causes for mismatches. It is helpful for example to provide
equivalence for the power nets, because netlist compare fails will often cause the power nets no

to be mapped. This in turn prevents matching of other, good parts of the circuit. To supply a
power net equivalence for "VDD" within a circuit (e.g. "LOGIC"), use this statement:

same_nets("LOGIC", "VDD", "VDD:P")

In this example it is assumed that the power net is labelled "VDD" in the layout and called
"VDD:P" in the schematic. Don't leave this statement in the script for final verification as it may
mask real errors.

For more information about "same_nets" see same_nets.

Circuit equivalence hint

By default, circuits with the same name are considered equivalent. If this is not the case,
equivalence can be established using the same_circuit function:

same_circuits("CIRCUIT_IN_LAYOUT", "CIRCUIT_IN_SCHEMATIC")

Declaring circuits as 'same' means they will still be compared. The function is just a hint where
to look for the compare target.

Device class equivalence hint

By default, device classes with the same name are considered equivalent. If this is not the case,
equivalence can be established using the same_device_classes function:

same_device_classes("PMOS_IN_LAYOUT", "PMOS_IN_SCHEMATIC")
same_device_classes("NMOS_IN_LAYOUT", "NMOS_IN_SCHEMATIC")

Pin swapping

Pin swapping can be useful in cases, where a logic element has logically equivalent, but
physically different inputs. This is the case for example for a CMOS NAND gate where the logic
inputs are equivalent in function, but not in the circuit and physical implementation. For such
circuits, the compare function needs to be given a degree of freedom and be allowed to swap the
inputs. This is achieved with the equivalent_pins function:

equivalent_pins("NAND_GATE", "A", "B")

The first argument is the name of the circuit in the layout netlist. You can only specify
equivalence in layout, not in the reference schematic. Multiple pins can be listed after the circuit
name. All of them will be considered equivalent.

Capacitor and resistor elimination

This feature allows eliminating "open" resistors and capacitors. Serial resistors cannot be
elimiated currently (shorted).

To eliminate all resistors with a resistance value above a certain threshold, use the max_res
function. This will eliminate all resistors with a value >= 1kOhm:

max_res(1000)

To eliminate all capacitors with a capacitance value below a certain threshold, use the max_caps
function. This will eliminate all capacitances with a value <= 0.1fF:

max_caps(1e-16)

How the compare algorithm works

The coarse flow of the netlist compare algorithm is this:

foreach circuit bottom up:
 if matching circuit found in reference netlist:
 if all subcircuits have been matched and pin matching has been
established for them:
 compare net graph locally from this circuit
 else:
 skip circuit with warning
 else:
 issue a circuit mismatch error

A consequence of this flow is that the compare will stop treating parent circuits when one
circuit's pins can't be matched to pins from the corresponding reference circuit or the
corresponding circuit can't be found in the reference netlist. This behaviour fosters a bottom-up
debugging approach: first fix the issues in subcircuits, then proceed to the parent circuits.

The local net graph compare algorithm is a backtracking algorithm with hinting through
topological net classification. Topological net classification is based on nearest-net
neighborhood. The following image illustrates this:

Here the IN net's neighborhood is VDD via a traversal of gate to source/drain over M1, to OUT
via a twofold traversal of gate to source/drain over M1 and M2 and to VSS via another single
traversal of gate to source/drain over M2. This uniquely identifies IN in this simple circuit. In
effect, OUT, VDD and VSS can be identified uniquely because their transitions from the IN net
are unambigously identifying them. The topological neighborhood is a simple metrics which
allows identifying matching nets from two netlists and deducing further relations.

In big netlists, the algorithm will first try to match nets unambigously according to their
neighborhood metrics and register them as paired nets. Such pairs often allow deducing further
matching pairs. This deduction is continued until all non-ambiguous pairing options are
exhausted. For resolving ambiguities, backtracking is employed: the algorithm proposes a match
and tentatively proceeds with this assumption. If this execution path leads to a mismatch or
logical contradiction, the algorith will go back to the beginning and restart with a new proposal.
Backtracking is usually required mainly to match networks with a high symmetry such as clock
trees.

KLayout 0.26 (2019-08-30 57cee792) [master]

KLayout Documentation (Qt 4): Main Index » KLayout User Manual » Layout vs. Schematic
(LVS) » LVS Netlist Tweaks

LVS Netlist Tweaks

 Top level pin generation
 Device combination
 Circuit flattening (elimination)
 Automatic circuit flattening (netlist alignment)
 Black boxing (circuit abstraction)
 Purging (elimination of redundancy)
 Normalization wrapper (simplification)

Netlist tweaking is important to standardize netlists. Without tweaking, the extracted netlist may
contain elements that are redundant or don't match anything found in the schematic.

Netlist tweaks are applied on the extracted Netlist object. This can be obtained with the netlist
function. This function will extract the netlist if not done already.

Netlist tweaks can also be applied to the schematic netlist. For example to flatten away a model
subcircuit called "NMOS", use this Netlist#flatten_circuit:

schematic.flatten_circuit("NMOS")

Top level pin generation

Circuits extracted don't have pins on the top hierarchy level as the extractor cannot figure out
where to connect to this circuit. The compare function does not try to match pins in this case. But
to gain a useful extracted netlists, pins are required. Without pins, a circuit can't be embedded in
a testbench for example.

KLayout offers a function to create top-level pins using a simple heuristics: for every named (i.e.
labelled) net in the top level circuit a pin will be created (Netlist#make_top_level_pins):

netlist.make_top_level_pins

Device combination

Combining devices is important for devices which are not represented as coherent entities in the
layout. Examples are:

 Fingered MOS transistors: MOS transistors with a large width are often split into
multiple pieces to reduce the parasitic gate and diffusion resistances and capacitances. In
the layout this is equivalent to multiple parallel transistors.

 Serial resistors: Large resistors are often separated into stripes which are then connected
in a meander structure. From the device perspective such resistors consist of several
resistors connected in series.

 Array capacitors: Large capacitors are often split into smaller ones which are arranged
in an array and connected in parallel. This helps controlling the parasitic series
resistances and inductances and avoids manufacturing issues.

In all these cases, the schematic usually summarizes these devices into a single one with lumped
parameter values (total resistance, capacitance, transistor width). This creates a discrepancy
which "device combination" avoids. "Device combination" is a step in which devices are
identified which can be combined into single devices (such as serial or parallel resistors and
capacitors). To run device combination, use Netlist#combine_devices:

netlist.combine_devices

The combination of serial devices might leave floating nets (the net connecting the devices
originally. These nets can be removed with Netlist#purge_nets. See also Netlist#simplify, which
is wrapper for several methods related to netlist normalization.

It's recommended to run "make_toplevel_pins" and "purge" before this step (see below).

Circuit flattening (elimination)

It's often required to flatten circuits that do not represent a specific level of organisation but act
as a wrapper to something else. In layouts, devices are often implemented as PCells and appear
as specific cells for no other reason than being implemented in a subcell. The same might happen
for schematic subcircuits which wrap a device. "Flattening" means that a circuit is removed and
it's contents are integrated into the calling circuits.

To flatten a circuit from the extracted netlist use Netlist#flatten_circuit:

netlist.flatten_circuit("CIRCUIT_NAME")

The argument to "flatten_circuit" is a glob pattern (shell-like). For example, "NMOS*" will
flatten all circuits starting with "NMOS".

Automatic circuit flattening (netlist alignment)

Instead of flattening circuits explicitly, automatic flattening is provided through the align
method.

The "align" step is optional, hence useful: it will identify cells in the layout without a
corresponding schematic circuit and flatten them. "Flatten" means their content is replicated

inside their parent circuits and finally the cell's corresponding circuit is removed. This is useful
when the layout contains structural cells: such cells are inserted not because the schematic
requires them as circuit building blocks, but because layout is easier to create with these cells.
Such cells can be PCells for devices or replication cells which avoid duplicate layout work.

The "align" method will also flatten schematic circuits for which there is no layout cell:

align

Black boxing (circuit abstraction)

Circuit abstraction is a technique to reduce the verification overhead. At an early stage it might
be useful to replace a cell by a simplified version or by a raw pin frame. The circuits extracted
from such cells is basically empty or are intentionally simplified. But as long as there is
something inside the cell which the parent circuit connects to, pins will be generated. These pins
then can be thought of as the circuit's abstraction.

A useful method in this context is the "blank_circuit" method. It clears a circuit's innards and
leaves only the pins. You can use this method to ensure abstracts in both the layout netlist and
the schematic. After this, the compare algorithm will identify both circuits as identical, provided
they feature the same number of pins.

To wipe out the innards of a circuit, use the Netlist#blank_circuit method:

netlist.blank_circuit("CIRCUIT_NAME")
schematic.blank_circuit("CIRCUIT_NAME")

The argument to "blank_circuit" is a glob pattern (shell-like). For example, "MEMORY*" will
blank out all circuits starting with "MEMORY".

NOTE: Use "blank_circuit" before "purge" or "simplify" (see below). This method sets a flag
(Circuit#dont_purge) which prevents purging of abstract circuits.

Purging (elimination of redundancy)

Extracted netlists often contain elements without a functional aspect: via cells for example
generate subcircuits with a single pin and no device. Isolated metal islands (letters, logos,
fill/planarisation patches) will create floating nets etc. Two methods are available to purge those
elements.

Netlist#purge will remove all floating nets, all circuits without devices or subcircuits.
Netlist#purge_nets will only purge floating nets. Floating nets are nets which don't connect to
any device or subcircuit.

netlist.purge
netlist.purge_nets

Normalization wrapper (simplification)

Netlist#simplify is a wrapper for "make_top_level_pins", "combine_devices" and "purge" in the
recommended order:

netlist.simplify

