

Aim:

To understand the basics of KLayout's LVS

Disclaimer:

This document is for personal records only. There is NO WARRANTY on technical correctness.

By Kazzz-S (2023-03-08) con-1 (2023-03-01) original (2023-02-21)

Part-VI: Errata

In LVS-CMOS-Inverter-NAND.pptx

In LVS-CMOS-Inverter-NAND-Con1.pptx

17. Using DMOS4 for the inv.cir Tutorial Prepare four SPICE deck files to test all S and D combinations. x Inv-DMOS4 cir x invX2.cir x invX1.cir w InvX2.cir inveli inv-DMOS4.cir SUBCKT INVERTER VSS IN OUT NWELL SUBSTRATE VDD \$choice=1 Mp VDD IN OUT NWELL PMOS W=1.5U L=0.25U \$choice=4 Mn OUT IN VSS SUBSTRATE NMOS W=0.9U L=0.25U date: 2023-02-16 1) correct D-S connections of the PMOS (flipped in the original) INVERTER VSS IN OUT NWELL SUBSTRATE VDD D and S are swapped * Mp VDD IN OUT NWELL PMOS W=1.5U L=0.25U Mp OUT IN VDD NWELL PMOS W=1.5U L=0.25U × Im-DM054.cm Mn OUT IN VSS SUBSTRATE NMOS W=0.9U L=0.25U I expect this should match! SUBCKT INVERTER VSS IN OUT NWELL SUBSTRATE VDD Schoice=2 Mp VDD IN OUT NWELL PMOS W=1.5U L=0.25U Mn VSS IN OUT SUBSTRATE NMOS W=0.9U L=0.25U This should have been "VDD Sorry for the inconvenience caused. × inv01 cr invX2.cir Simple CMOS in INVERTER VSS IN OUT NWELL SUBSTRATE VDD \$choice=3 Mp OUT IN VSS WELL PMOS W=1.5U L=0.25U Mn VSS IN OUT SUBSTRATE NMOS W=0.9U L=0.25U KLayout Forum No. 2238 (as Study002: LVS of CMOS Inverter and 2-input NAND) 6

Part-VII: Re-experiments with MOS4

KLayout Forum No. 2238 (as Study002: LVS of CMOS Inverter and 2-input NAND)

21. Using MOS4 for the inv.cir Tutorial 1. Remove the two dummy layers for S- and D-recognition that were added to use the DMOS4 extractor. 8× Layers NWELL 1/0 ACTIVE 2/0 PPLUS 3/0 NPLUS 4/0 POLY 5/0 CONTACT 6/0 METAL1 7/0 METAL1_LABEL 7/1 VIA1 8/0 METAL2 9/0 METAL2_LABEL 9/1 All Files removed D-Recognition 11/0 Inv.zip

2. Prepare four SPICE deck files to test all S and D combinations.

I expect all four should match by S-D swapping.

4. Run the modified LVS script four times: #1/4

4 Þ	inv.cir		invX1.cir	×V	invX2.cir	× inv		×	
1	* Simple (CMOS :	inverer ci	rcuit	: original:	(PMOS,	NMOS)=(incorrect,	correct)
3 4 5	.SUBCKT IN Mp VDD IN	VVERT	R VSS IN WELL PMOS	OUT NWE W=1.5	ELL SUBSTRAT J L=0.250	TE VDD		\$ch	oice=1
6 7	Mn OUT IN .ENDS	VSS S	SUBSTRATE	NMOS W=	0.90 L=0.25		chad a	c ovpoct	od

Netlist	Schematic	Cross	Referen	ce Log				
Circuits			0	Objects		0	Layout	Reference
INVE INVE	RTER			- 🔳 IN	/ERTER		INVERTER	INVERTER
				► -D	Pins			
				> †	Nets			
				• 나	Devices			
				•	나 NMOS		\$2 / NMOS [L=0.25,	N / NMOS [L=0.25, W=0.9]
					▶ • S		VSS (1)	VSS (2)
					🕨 🔶 D		OUT (2)	OUT (3)
				2	▶ • G		IN (2)	IN (3)
					▶ • B		SUBSTRATE (1)	SUBSTRATE (2)
				•	부 PMOS		\$1 / PMOS [L=0.25,	P / PMOS [L=0.25, W=1.5]
					▶ • S ⇔ D		VDD (1)	VDD (2)
					▶ • D ⇔ S		OUT (2)	OUT (3)
					▶ • G		IN (2)	IN (3)
					▶ • • B		NWELL (1)	NWELL (2)

Configure Probe Net 🗆 Lock

> \$choice=1

>>> Current design file = '/home/sekigawa/GitWork/ForumKLayout/Study002-Con2/Inv/inv.oas'
 Top cell name = 'INVERTER'
 SPICE deck file = 'inv.cir'

4. Run the modified LVS script four times: #2/4

4 ►	inv.cir	×	invX1.cir		invX2.cir		x inv-c		×	
1	* Simple	CMOS	inverer	circuit	Variant	X1:	(PMOS,	NMOS)=(incorrect,	incorrect
3 4 5	.SUBCKT Mp VDD I	INVERT	ER VSS I	IN OUT NW	VELL SUBS	TRATE U	VDD		\$cho	oice=2
6	Mn VSS I	N OUT	SUBSTRAT	TE NMOS W	V=0.9U L=0	0.25U				
8					This I	net i	matc	hed as	s expecte	ed.

Netlist	Schematic	Cross	Referen	ce Log				
Circuits			0	Objects		0	Layout	Reference
INVE	RTER			🔻 🔳 IN	/ERTER		INVERTER	INVERTER
				► -D	Pins			
				> †	Nets			
				• 나	Devices			
				•	나 NMOS		\$2 / NMOS [L=0.25,	N / NMOS [L=0.25, W=0.9]
					▶		VSS (1)	VSS (2)
					▶		OUT (2)	OUT (3)
					▶ - G		IN (2)	IN (3)
					▶ -0- B		SUBSTRATE (1)	SUBSTRATE (2)
				•	부 PMOS		\$1 / PMOS [L=0.25,	P / PMOS [L=0.25, W=1.5]
					▶ • S ⇔ D		VDD (1)	VDD (2)
					▶ 🔷 D ⇔ S		OUT (2)	OUT (3)
					▶ - G		IN (2)	IN (3)
					▶ • • B		NWELL (1)	NWELL (2)

Configure Probe Net 🗆 Lock

> \$choice=2 2

>>> Current design file = '/home/sekigawa/GitWork/ForumKLayout/Study002-Con2/Inv/inv.oas'
 Top cell name = 'INVERTER'
 SPICE deck file = 'invX1.cir'

4. Run the modified LVS script four times: #3/4

	inv.cir	×	invX1.cir	×	invX2.cir	×	inv-correct.cir	×	
1	* Cimula	CHOC	datteaca	at point t	Maniant	V2. (DM0		an and at	1
2	* Simple	CMOS	inverer	circuit	variant	XZ: (PMU	S, NMUS)=(correct,	incorrec
4	. SUBCKT	INVER	TER VSS 1	IN OUT NU	VELL SUBS	TRATE VDD		Ścho	nice=3
5	Mp OUT I	V VDD	NWELL PN	105 W=1.5	5U L=0.25	J 2 2511		çen	
7	FNDS		SUDSTRAT		V=0.90 L=0	9.250			
8					This r	het ma	tched as	expecte	ed.

Netlist	Schematic	Cross Referen	Log				
Circuits		0	Objects		6 Layout	F	Reference
🔲 INVE	RTER		🔻 🔳 INV	ERTER	INVERT	ER 1	INVERTER
			► -D F	ins			
			> † N	lets			
			· 나 [evices			
			v 1	F NMOS	\$2 / N	MOS [L=0.25, N	N / NMOS [L=0.25, W=0.9]
			1	• • s ⇔ D	VSS (1) \	VSS (2)
				• • D ⇔ S	OUT (2) (OUT (3)
			1	• • G	IN (2)	1	IN (3)
				• • B	SUBSTR	ATE (1) 5	SUBSTRATE (2)
			v 1	PMOS	\$1 / P	MOS [L=0.25, F	P / PMOS [L=0.25, W=1.5]
				• • S	VDD (1) \	VDD (2)
			1	• 📀 D	OUT (2) (OUT (3)
)	• • G	IN (2)	1	IN (3)
			1	• • B	NWELL	(1)	NWELL (2)

Configure Probe Net 🗆 Lock

> \$choice=3

>>> Current design file = '/home/sekigawa/GitWork/ForumKLayout/Study002-Con2/Inv/inv.oas'
 Top cell name = 'INVERTER'
 SPICE deck file = 'invX2.cir'

21. Using M 4. Run the	OS4 f	or the ir	v.cir Tuto our times: #4/4	rial 1 2 3 4 5 6 7 8 9 10	<pre>inv.cir x invX1.c * Simple CMOS inver * Original: \${klayo * Modified: inv-cor * by: Kazz-S * date: 2023-03 * aims: 1) corr .SUBCKT INVERTER VS * Mp_VDD_TN_OUT_NWE</pre>	ir x invX2.cir x inv-correct.cir ter circuit out_root}/testdata/lvs/inv.cir rect.cir PMOS, NMOS)=(correct, c -06 -06 -ect D-S connections of the PMOS (flip SS IN OUT NWELL SUBSTRATE VDD FLL PMOS W=1.5U L=0.25U	× \$choice=4 orrect) ped in the original)
				13	Mp OUT IN VDD NWELL	PMOS W=1.5U L=0.25U	
Netlist Schematic Cro	oss Reference	e Log		15	.ENDS	This net matche	ad as expected
Circuits	0 0	bjects	C Layout	Reference 16		This liet materie	u as expected.
Configure Probe Net Loc > \$choice=4 4 >>> Current design file = Top cell name = SPICE deck file =	ck '/home/seki 'INVERTER' 'inv-correc	<pre>> -> Pins > ↑ Nets > ↓ Devices > ↓ NMOS > • S > • D > • G > • B > ↓ PMOS > • S > • D > • G > • B > • D > • G > • B</pre>	<pre>\$2 / NMOS [L=0. VSS (1) OUT (2) IN (2) SUBSTRATE (1) \$1 / PMOS [L=0. VDD (1) OUT (2) IN (2) NWELL (1)</pre>	25, N / NMOS [L=0.2 VSS (2) OUT (3) IN (3) SUBSTRATE (2) 25, P / PMOS [L=0.2 VDD (2) OUT (3) IN (3) NWELL (2)	5, W=0.9] 5, W=1.5]		
	KL	ayout Forum	No. 2238 (as St	udy002: LVS	of CMOS Inverte	r and 2-input NAND)	13

ircuits	0	Objects	Layout	Reference
INVERTER		INVERTER	INVERTER	INVERTER
		▶ -⊃ Pins		
		▶ ↑ Nets		
		▼ ↓ Devices		
		▼ ᅷ NMOS	\$2 / NMOS [L=0.	25, N / NMOS [L=0.25, W=0.9]
		► 🗢 S	VSS (1)	VSS (2)
		► 🔶 D	OUT (2)	OUT (3)
		► 🗢 G	IN (2)	IN (3)
		► -	SUBSTRATE (1)	SUBSTRATE (2)
		▼ ⊥ PMOS	\$1 / PMOS [L=0.	25, P / PMOS [L=0.25, W=1.5]
		► • S ⇔ D	VDD (1)	VDD (2)
		► 🗢 D ⇔ S	OUT (2)	OUT (3)
		► • G	IN (2)	IN (3)
		► • • B	NWELL (1)	NWELL (2)
onfigure Probe Net	Lock Only	in PMOS, S <=>	D swapping h	appened.
>> Current design fi Top cell nam SPICE deck fi	le = '/home/se ne = 'INVERTER le = 'inv.cir'	kigawa/GitWork/ForumKLa	yout/Study002-Con2/	/Inv/inv.oas'

2. Prepare four SPICE deck files to test all S and D combinations.

I expect all four should match by S-D swapping.

KLayout Forum No. 2238 (as Study002: LVS of CMOS Inverter and 2-input NAND)

17

4. Run the modified LVS script four times: #1/4

4 Þ	inv2.cir	x inv2X1.cir	x inv2X2.cir	x inv2-correct.cir	×
1					
2	* Simple CN	10S inverer	circuit : original:	(PMOS, NMOS)=(i	ncorrect, correct)
2					
4	.SUBCKT IN	/ERTER WITH	DIODES VSS IN OUT VI	D	
4 5	.SUBCKT INV Mp VDD IN (VERTER WITH	DIODES VSS IN OUT VE 5 W=1.5U L=0.25U	D	\$choice=1
4 5 6 7	SUBCKT IN Mp VDD IN (Mn OUT IN)	VERTER WITH DUT VDD PMOS VSS VSS NMOS	DIODES VSS IN OUT VE 5 W=1.5U L=0.25U 5 W=0.9U L=0.25U	DD	\$choice=1

rcuits	0	Objects	Layout	Reference
INVERTER_WITH_DIOD	ES	INVERTER_WITH_DIC	DE INVERTER_WITH_	DIODFINVERTER_WITH_DIODES
		▶ -⊃ Pins		
		▶ 🕈 Nets		
		▼ ⊥ Devices		
		▼ ᅷ NMOS	\$2 / NMOS [L=0	.25, N / NMOS [L=0.25, W=0.9]
		🕨 🔶 S	VSS (2)	VSS (3)
		▶ • D	OUT (2)	OUT (3)
		► 🗢 G	IN (2)	IN (3)
		► 🗢 B	VSS (2)	VSS (3)
		▼ ᅷ PMOS	\$1 / PMOS [L=0	.25, P / PMOS [L=0.25, W=1.5]
		▶ • S ⇔ D	VDD (2)	VDD (3)
		► • D ⇔ S	OUT (2)	OUT (3)
		► • G	IN (2)	IN (3)
		► 🗢 B	VDD (2)	VDD (3)

Configure Probe Net 🗆 Lock

> \$choice=1

>>> Current design file = '/home/sekigawa/GitWork/ForumKLayout/Study002-Con2/Inv2/inv2.oas' Top cell name = 'INVERTER_WITH_DIODES' SPICE deck file = 'inv2.cir'

4. Run the modified LVS script four times: #2/4

< Þ. j	inv2.cir	×	inv2X1.cir		inv2X2.cir		x inv2-	correct.cir	×	
1	* Simple	CMOS	inverer	circuit	Variant	X1:	(PMOS,	NMOS)=	(incorrect,	incorrect
3 4 5				DIODES N	/SS IN OU	T VDD).		\$cho	oice=2
6 7	Mn VSS I	N OUT	VSS NMOS	5 W=0.9U	L=0.250 L=0.250					
8					This r	net i	matcł	ned as	s expecte	d.

Netlist	Schematic	Cross Referen	ce Log				
Circuits		0	Objects		Layout	Reference	
🔲 INVE	RTER_WITH_DI	ODES	🔻 🔳 INV	ERTER_WITH_DIOD	E INVERTER_	WITH_DIODEINVERTER_WITH_DIODES	
			► -D	Pins			
			► ± 1	lets			
			▼ 부	Devices			
			•	- NMOS	\$2 / NMOS	[L=0.25, N / NMOS [L=0.25, W=0.9]	
				▶ • S ⇔ D	VSS (2)	VSS (3)	
			-	◆ D ⇔ S	OUT (2)	OUT (3)	
				► • G	IN (2)	IN (3)	
				🕨 🗢 B	VSS (2)	VSS (3)	
			• 1	PMOS	\$1 / PMOS	[L=0.25, P / PMOS [L=0.25, W=1.5]	
				▶ • S ⇔ D	VDD (2)	VDD (3)	
				• • D ⇔ S	OUT (2)	OUT (3)	
				• • G	IN (2)	IN (3)	
				• • B	VDD (2)	VDD (3)	

Configure Probe Net 🗆 Lock

> \$choice=2 2

>>> Current design file = '/home/sekigawa/GitWork/ForumKLayout/Study002-Con2/Inv2/inv2.oas'
 Top cell name = 'INVERTER_WITH_DIODES'
 SPICE deck file = 'inv2X1.cir'

4. Run the modified LVS script four times: #3/4

4 K _	inv2.cir	×	inv2X1.cir	×	inv2X2.cir		x inv2-	correct.cir	×	
1 2	* Simple	CMOS	inverer	circuit	Variant	X2:	(PMOS,	NMOS)=(correct,	incorrect
3 4 5		SUBCKT INVERTER WITH DIODES VSS IN OUT VDD \$choice=3								
6 7	Mn VSS 1	N OUT	VSS NMOS	5 W=0.9U	L=0.25U					
8					This r	net r	natcł	ned as	expecte	d.

Netlist	Schematic	Cross Referen	ce Log				
Circuits		0	Objects		0	Layout	Reference
INVE	RTER_WITH_DI	ODES	🔻 🔳 INV	ERTER_WITH_DIOD	E	INVERTER_WITH_DIOD	DEINVERTER_WITH_DIODES
			► -D F	ins			
			► † I	lets			
			▼ 나 [)evices			
			v 1	- NMOS		\$2 / NMOS [L=0.25,	N / NMOS [L=0.25, W=0.9]
)	• • s ⇔ D		VSS (2)	VSS (3)
				• D ⇔ S		OUT (2)	OUT (3)
)	• • G		IN (2)	IN (3)
				• • B		VSS (2)	VSS (3)
			v 1	PMOS		\$1 / PMOS [L=0.25,	P / PMOS [L=0.25, W=1.5]
)	• • S		VDD (2)	VDD (3)
			1	• • D		OUT (2)	OUT (3)
)	• • G		IN (2)	IN (3)
			1	• • B		VDD (2)	VDD (3)
L							

Configure Probe Net 🗆 Lock

> \$choice=3 3

>>> Current design file = '/home/sekigawa/GitWork/ForumKLayout/Study002-Con2/Inv2/inv2.oas'
 Top cell name = 'INVERTER_WITH_DIODES'
 SPICE deck file = 'inv2X2.cir'

22. Using MOS44. Run the modif	for the invited LVS script for	<pre>inv2.cir x inv2X1 * Simple CMOS inver * Original: \${klayo * * Modified: inv2.co * by: Kazzz-S * date: 2023-03 * aims: 1) corn .SUBCKT INVERTER WI * Mp VDD IN OUT NWE</pre>	<pre>x inv2X1.cir x inv2X2.cir x inv2-correct.cir x CMOS inverter circuit al: \${klayout_root}/testdata/lvs/inv2.cir \$choice=4 ed: inv2-correct.cir (PMOS, NMOS)=(correct, correct) by: Kazzz-S te: 2023-03-06 ms: 1) correct D-S connections of the PMOS (flipped in the original INVERTER WITH DIODES VSS IN OUT VDD IN OUT NWELL PMOS W=1.5U L=0.25U</pre>				
Netlist Schematic Cross Refer	ence Log		13	Mp OUT IN VDD VDD F Mn OUT IN VSS VSS N	MOS W=1.5U L=0.25U NMOS W=0.9U L=0.25U		
Circuits	Objects	Lavout	Reference 16	.ENDS	This net matc	hed as expected.	
Configure Probe Net Lock > \$choice=4 4 >>> Current design file = '/home/s	<pre>> → Pins > → Pins > ↑ Nets > ↓ Devices > ↓ NMOS > ↓ S > ↓ O > ↓ O B → O = ↓ O B → O A → O A →</pre>	\$2 / NMOS [L=0 VSS (2) OUT (2) IN (2) VSS (2) \$1 / PMOS [L=0 VDD (2) OUT (2) IN (2) VDD (2) VDD (2)	DIODEINVERTER_WITH 0.25, N / NMOS [L=0 VSS (3) OUT (3) IN (3) VSS (3) 0.25, P / PMOS [L=0 VDD (3) OUT (3) IN (3) VDD (3) VDD (3)	_DIODES .25, W=0.9] .25, W=1.5]			
SPICE deck file = 'inv2-co	KLayout Forum	No. 2238 (as St	udy002: LVS	of CMOS Inverte	r and 2-input NAND)	21	

rcuits	0	Objects	Cayout	Reference	
INVERTER_WITH_DI	ODES	INVERTER_WITH_	DIODE INVERTER_WITH	H_DIODEINVERTER_WITH_DIODES	
		▶ -⊃ Pins			
		T Nets			
		▼ \ Devices			
		▼ ᅷ NMOS	\$2 / NMOS [L=	=0.25, N / NMOS [L=0.25, W=0.9]	
		► 📀 S	VSS (2)	VSS (3)	
		► 🗢 D	OUT (2)	OUT (3)	
		► 🗢 G	IN (2)	IN (3)	
		► 🗢 B	VSS (2)	VSS (3)	
		▼ ᅷ PMOS	\$1 / PMOS [L=	=0.25, P / PMOS [L=0.25, W=1.5]	
		► • S ⇔ D	VDD (2)	VDD (3)	
		► • D ⇔ S	OUT (2)	OUT (3)	
		► 🗢 G	IN (2)	IN (3)	
		► 🗢 B	VDD (2)	VDD (3)	
figure Probe Net	Lock Only	′ in PMOS, S <=	D swapping I	nappened.	
choice=1					
Current design fil	e = '/home/se	kigawa/GitWork/ForumK	Layout/Study002-Con2	/Inv2/inv2.oas'	
Top cell nam	ne = 'INVERTER	WITH DIODES'			

https://www.klayout.de/forum/discussion/comment/ 9493 on 2023-02-17 February 17

Thanks for your suggestion and helps! If there is any information I can supply, please tell me. Here is the test file.

nand.test.zip 14.7K

WENSHIH

Starting point. Thank you for providing this!

Check the provided resource files and modify them if necessary. 1.

KLayout Forum No. 2238 (as Study002: LVS of CMOS Inverter and 2-input NAND)

24

6 🗙

ØX

2. Using nandSpice16.py, prepare 16 distinct SPICE deck files that cover all D-S permutations/combinations.

26

3. Check the original design in GDS2.

4. Remove the four dummy layers for S- and D-recognition that were added to use the DMOS4 extractor.

Monoecy (/məˈniːsi/; adj. monoecious /məˈniː[əs/)^[1] is a sexual system in seed plants where separate male and female cones or flowers are present on the same plant.

Monoecy - Wikipedia

KLayout Forum No. 2238 (as Study002: LVS of CMOS Inverter and 2-input NAND)

29

30

KLayout Forum No. 2238 (as Study002: LVS of CMOS Inverter and 2-input NAND)

33

VDD

\$2

M4

\$1

M6

\$3

24. Summary and Further Questions

◆ In the case of the Inv and Inv2 LVS, all four reference netlists matched as expected with S⇔D swapping.

In the case of the 2-input NAND, why does only PMOS M5 behave differently regarding the S D swapping?

24. Summary and Further Questions

Once a certain combination is matched by chance (algorithm/input dependent), are no further possibilities (even if any) checked?

Matthias February 13

@WENSHIH: source and drain are interchangeable in the standard MOS device. So that is not the problem here. KLayout will basically assign S and D randomly and try both ways during compare (and also during device combination).

Matthias February 17

Have I just confirmed this *specification* through this experiment?

@dick_freebird About the S/D symmetry: the MOS3/MOS4 extractors are by design symmetric. As S/D are represented by the same layer, they cannot differentiate. So if the schematic is correct, there is no switch by which I can tell the extractors (hence the extracted netlist) to use a specific source/drain orientation. So no configuration option.

But the solution is simply to use DMOS3/DMOS4 for asymmetric devices (I think that can be clearly differentiated by the device type). If you do so, there are two separate layers for S and D, and there is no ambiguity.

Matthias

Already verified in "LVS-CMOS-Inverter-NAND-Con1.pptx"

24. Summary and Further Questions

I have drawn the net neighborhood graph for the 2-input NAND for my study.

Local Parts Storeroom

