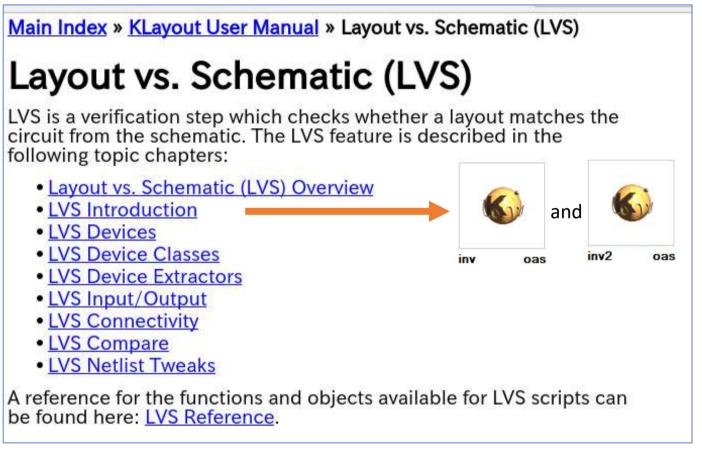


Aim:

To understand the basics of KLayout's LVS

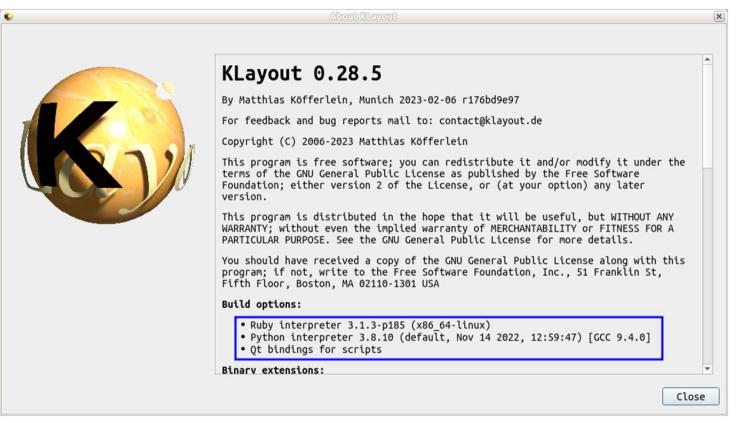
Disclaimer:


This document is for personal records only. There is NO WARRANTY on technical correctness.

By Kazzz-S (2023-02-21)

Part-I: Getting Started Summary of My Confusion

1. Study Materials



Forum

[1] <u>https://www.klayout.de/forum/discussion/2234/net-check-on-package-level</u>

[2] https://www.klayout.de/forum/discussion/2238/how-to-extract-transistor-in-parallel-topology-in-lvs

2. Study Environment and Legends in this Document

Legends:

<1> my questions

3. Incorrect SPICE Net

The original **inv.cir** and **inv2.cir** seem incorrect; or simple typos?

🖹 🗐 inv.cir	Original/Incorrect	õ	B	invKazzzS.cir	Modified/Correct	õ
1 2 * Simple CMOS inverer ci			1	* Simple CMOS inve	rter circuit	
3			- 2			
4 .SUBCKT INVERTER VSS IN 5 Mp VDD IN OUT NWELL PMOS		+	4	<pre>* Original: \${klay</pre>	out_root}/testdata/lvs/inv.cir	
6 Mn OUT IN VSS SUBSTRATE 7 .ENDS	NMOS W=0.9U L=0.25U		6	<pre>* Modified: invKaz * by: Kazzz-</pre>	and a second s	
8 🥧		→	8	* date: 2023-0	2-07 🦳	
			9		als (drain and source) of the PMOS seem inter	changed 🦂
			10 + 11		SS IN OUT NWELL SUBSTRATE VDD	
					ELL PMOS W=1.5U L=0.25U	
					L PMOS W=1.5U L=0.25U	
					TRATE NMOS W=0.9U L=0.25U	
			15	. ENDS -		
🗎 🗐 inv2.cir	Original/Incorrect	õ	8	inv2KazzzS.cir	Modified/Correct	õ
		(1+14)A	1	<u>()</u>		
2 * Simple CMOS inverer ci	rcuit	*	← 2 3	* Simple CMOS inve	rter circuit 🦳	
4 .SUBCKT INVERTER WITH DI	ODES VSS IN OUT VDD	+	4	No. of the second se	out root}/testdata/lvs/inv2.cir ——	
5 Mp VDD IN OUT VDD PMOS W			5	*		
6 Mn OUT IN VSS VSS NMOS W	=0.9U L=0.25U		6	* Modified: inv2Ka		
7 .ENDS		-	7	* by: Kazzz-		
0			8	Contract Sectors in the Automatical Sectors	als (drain and source) of the PMOS seem inter	changed
			10		tes (thath and source) of the mos seem inter-	changea
			10 C C C C C C C C C C C C C C C C C C C		ITH_DIODES VSS IN OUT VDD	
					D PMOS W=1.5U L=0.25U	
				and a second to a second the second s	PMOS W=1.5U L=0.25U	
				.ENDS	NMOS W=0.9U L=0.25U	
			10	, LINDJ		

3. Incorrect SPICE Net

PMOS' swapped drain-source connections in the reference SPICE nets could be <u>intentional</u> to test the internal algorithm of LVS because in the Forum [2] ...

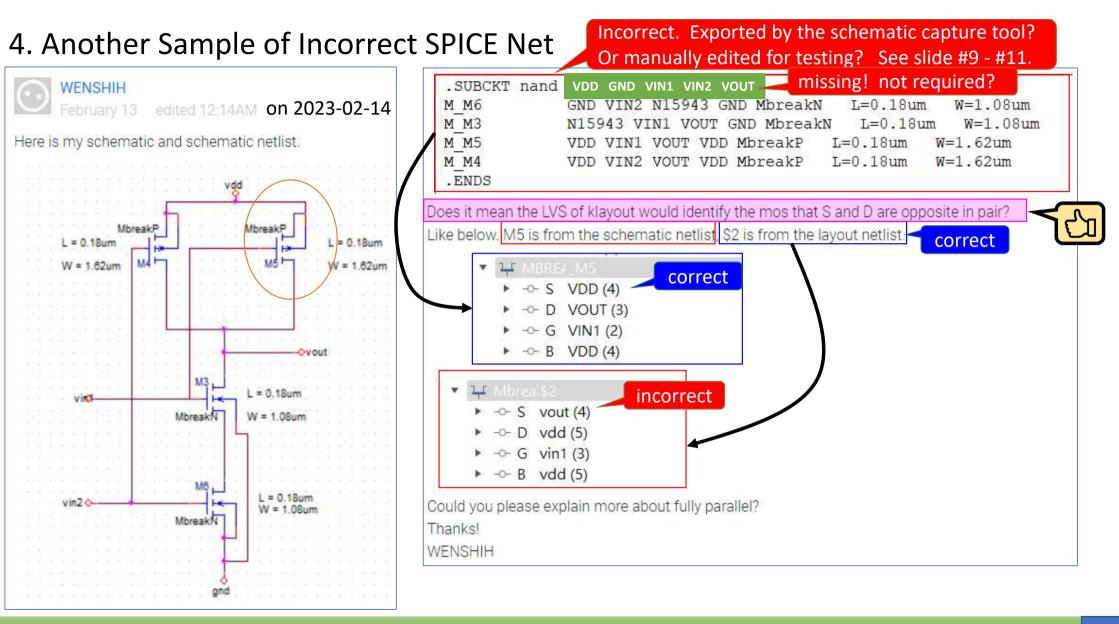
Matthias 6.53AM on 2023-02-13

@WENSHIH: source and drain are interchangeable in the standard MOS device. So that is not the problem here. KLayout will basically assign S and D randomly and try both ways during compare (and also during device combination).

"combine_devices" will not have an effect as there are no parallel devices as @dick_freebird pointed out.

Could you show us your schematic netlist? After all, this is a simple NAND, so that should actually be very simple.

Matthias


3. Incorrect SPICE Net

<2>

Then, why do both **<u>extracted</u>** (resultant) nets coincide but are incorrect (drain and source interchanged)?

🖻 📄 inv_extracted.cir	🖹 🗐 inv_extracted_KazzzS.cir
1 * Extracted by KLayout —	← 1 * Extracted by KLayout with <invkazzzs.cir></invkazzzs.cir>
2 ←	2 ←
3 * cell INVERTER	3 * cell INVERTER
4 .SUBCKT INVERTER	4 .SUBCKT INVERTER
5 * net 1 IN	5 * net 1 IN
6 * net 2 VSS	6 * net 2 VSS
7 * net 3 VDD	7 * net 3 VDD
8 * net 4 OUT	8 * net 4 OUT
9 * net 5 NWELL	9 * net 👌 NWELL 🥧
10 * net/ 6 SUBSTRATE	10 * net/ 6 SUBSTRATE
11* device instance \$1 r0 *1 1.025,4.95 PMOS	11* device instance \$1 r0 *1 1.025,4.95 PMOS
12 M\$1 3 1 4 5 PMOS L=0.25U W=1.5U AS=0.675P AD=0.675P PS=3.9U PD=3.9U	12 M\$1 3 1 4 5 PMOS L=0.25U W=1.5U AS=0.675P AD=0.675P PS=3.9U PD=3.9U
13* device instance \$2 r0 *1 1.025,0.65 NMOS	13* device instance \$2 r0 *1 1.025,0.65 NMOS
14 M\$2 2 1 4 6 NMOS L=0.25U W=0.9U AS=0.405P AD=0.405P PS=2.7U PD=2.7U	14 M\$2 2 1 4 6 NMOS L=0.25U W=0.9U AS=0.405P AD=0.405P PS=2.7U PD=2.7U
15 . ENDS INVERTER -	15.ENDS INVERTER

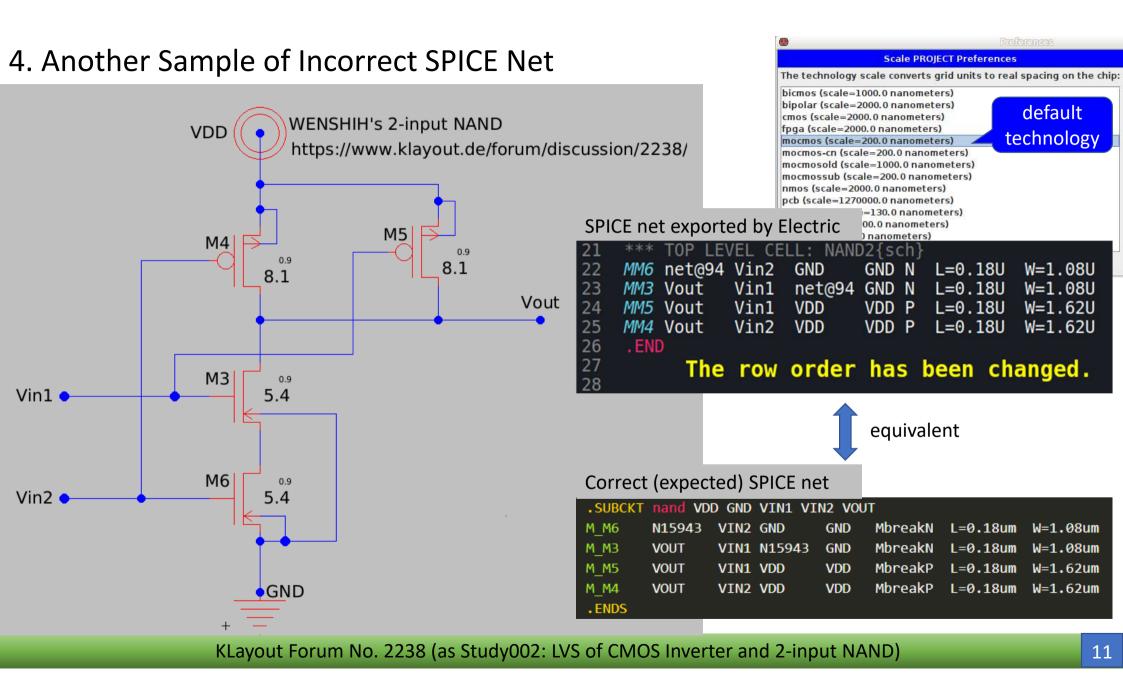
🖹 📄 inv2_extracted.cir	🖹 📄 inv2_extracted_KazzzS.cir
1 * Extracted by KLayout — →	← 1 * Extracted by KLayout with <inv2kazzzs.cir></inv2kazzzs.cir>
2 < 3 * cell INVERTER_WITH_DIODES < 4 .SUBCKT_INVERTER_WITH_DIODES <	2 3 * cell INVERTER_WITH_DIODES 4 .SUBCKT INVERTER WITH DIODES
5 * net 1 IN	5 * net 1 IN
7 * net 3 0UT	7 * net 3 0UT 8 * net 4 VSS
9 * devicetinstance \$1 r0 *1 1.025,4.95 PMOS	9 * device instance \$1 r0 *1 1.025,4.95 PMOS 10 M\$1 2 1 3 2 PMOS L=0.25U W=1.5U AS=0.675P AD=0.675P PS=3.9U PD=3.9U 11* device instance \$2 r0 *1 1.025,0.65 NMOS
12 M\$2 4 1 3 4 NMOS L=0.25U W=0.9U AS=0.405P AD=0.405P PS=2.7U PD=2.7U	12 M\$2 4 1 3 4 NMOS L=0.25U W=0.9U AS=0.405P AD=0.405P PS=2.7U PD=2.7U - 13 .ENDS INVERTER_WITH_DIODES -

4. Another Sample of Incorrect SPICE Net

■ Correct (expected) SPICE net to be extracted

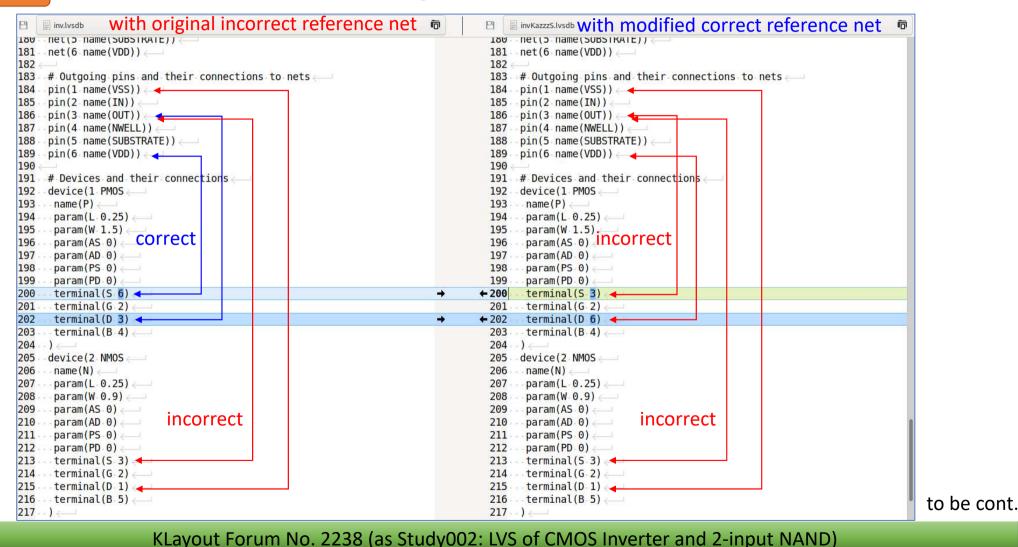
.SUBCKT	nand VD	d GND	VIN1 VI	N2 VOL	JT		
M_M6	N15943	VIN2	GND	GND	MbreakN	L=0.18um	W=1.08um
М_МЗ	VOUT	VIN1	N15943	GND	MbreakN	L=0.18um	W=1.08um
M_M5	VOUT	VIN1	VDD	VDD	MbreakP	L=0.18um	W=1.62um
M_M4	VOUT	VIN2	VDD	VDD	MbreakP	L=0.18um	W=1.62um
. ENDS							

Extracting a correct SPICE deck is a duty of a schematic editor, not of KLayout!


Let's try the Electric CAD (developed by the legendary Steven M. Rubin) after many many many wars!

4. Another Sample of Incorrect SPICE Net

- Schematic symbol of a PMOS and its four terminals (ports) in *Electric*
- The source is closer to the bulk; the symbol is asymmetric to avoid misconnection.


			Node Properties	
		Type: 4-Port-Trans	sistor (pMOS)	
		Name: pmos-4@0		
		Width: 2	X position: -12	2.5
	\sim /	Length: 2	Y position: 23	
$\mathbf{\nabla}$		Rotation: 90	Mirror L-R	Mirror U-D
		Less App	ly Cancel	ок
			panded 🛛 Invisible Outside	1
			meters: O Bus Members on I	Port: Show All
		input port g connects	to wire <u>ahlighted)</u> connects to wire:	
		bidirectional port d co		
		input port b connects		
		The high	lighted cursor (+) is a	bit hard to see!
		Locked See	Color and Pattern	Edit Parameters

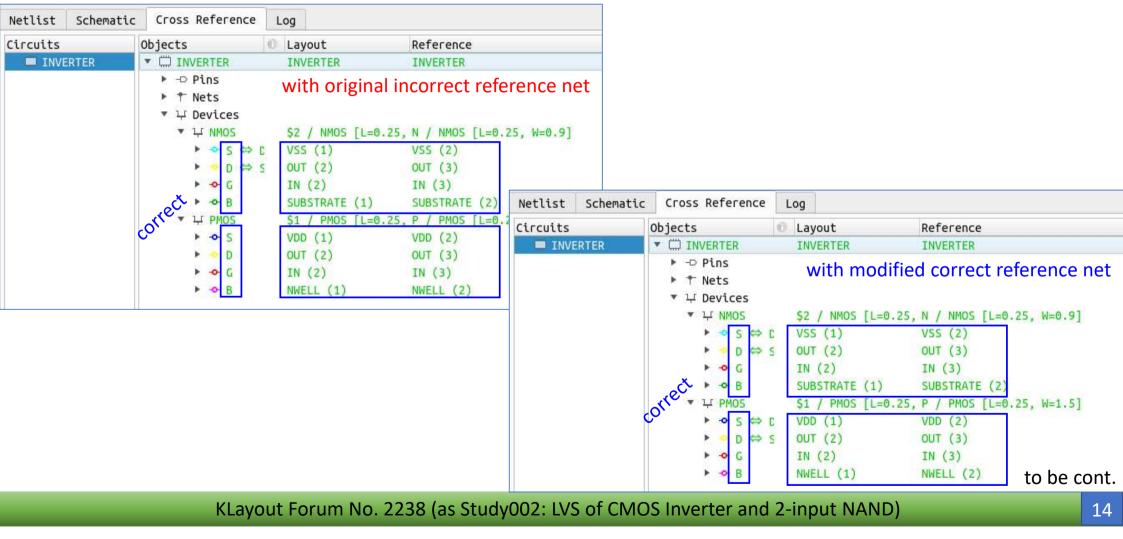
5. Incorrect Device Terminal Connections

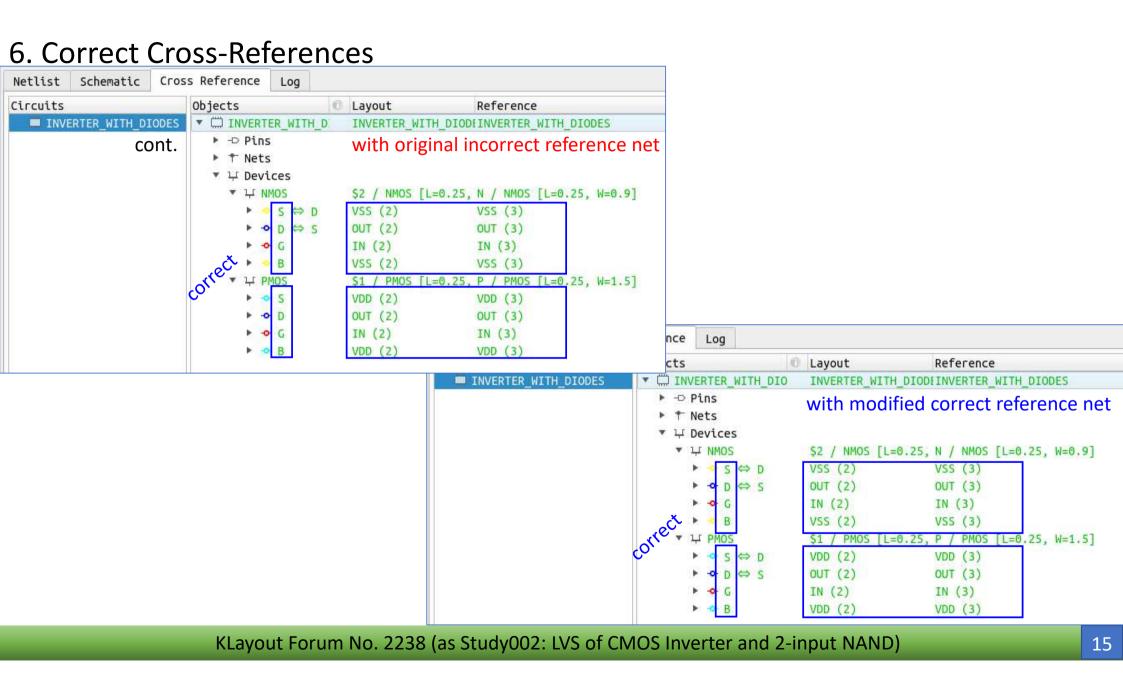
<3>

The device connections are more confusing because...

12

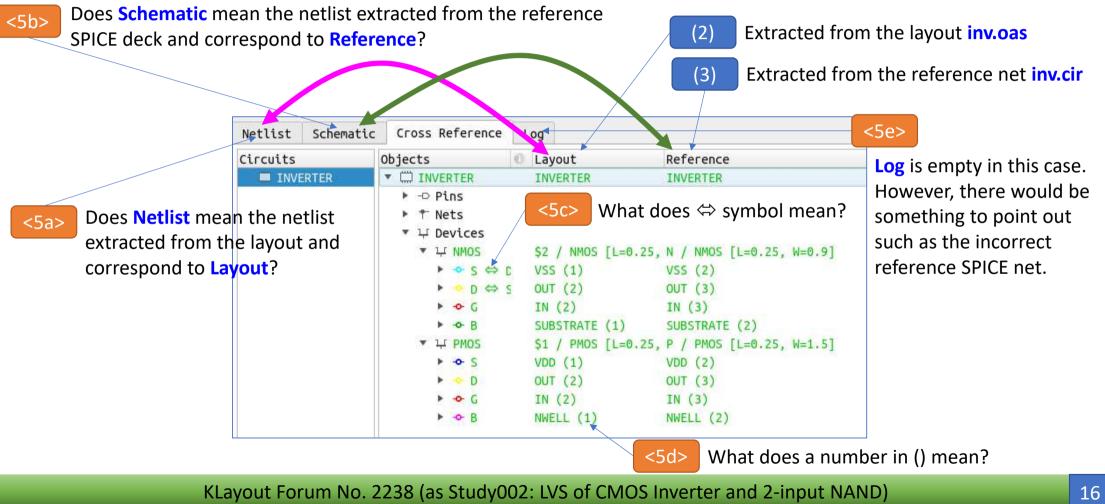
5. Incorrect Device Terminal Connections


cont.


B imv2/sade with original incorrect reference net in the inv2/sazes/sade with modified correct reference net in the inv2/sazes/sade 199 net(1 name(VSS)) 199 net(2 name(IN)) 199 191 net(3 name(0UT)) 191 net(3 name(0UT)) 191 192 net(1 name(VSS)) 191 net(3 name(0UT)) 192 193 194 # Outgoing pins and their connections to nets 193 194 # Outgoing pins and their connections to nets 193 195 pin(1 name(VSS)) 193 196 pin(2 name(IN)) 193 197 pin(3 name(0UT)) 193 198 pin(4 name(VDD)) 193 199 pin(4 name(VD)) 194 199 param(L 0.25) 201 201 device(1 PMOS 201 2022 name(P) 202 2033 param(L 0.25) 204 204 param(A 0) incorrect 205 param(X 0) 206 206 param(X 0) 206 207 param(A 0) incorrect 208
190. net(2 name(IN)) 190. net(2 name(IN)) 191. net(3 name(VDD)) 191. net(3 name(VDD)) 193. et (4 name(VSS)) 193. et (4 name(VDD)) 194. # Outgoing pins and their connections to nets 193. et (4 name(VDD)) 195. pin(1 name(VSS)) 194. # Outgoing pins and their connections to nets 196. pin(2 name(IN)) 195. pin(1 name(VSS)) 197. pin(3 name(OUT)) 195. pin(1 name(VSS)) 198. pin(4 name(VDD)) 196. pin(2 name(IN)) 199. device(1 PMOS 200. # Devices and their connections 201. device(1 PMOS 201. device(1 PMOS 202. name(P) 203. param(L 0. 25) 204. param(W 1.5) 204. param(W 1.5) 205. param(AS 0) Correct 206. param(AS 0) Correct 207. param(PD 0) 206. param(AS 0) 208. param(PD 0) 206. param(AS 0) 209. terminal(G 2) 210. terminal(G 3) 210. terminal(G 2) 210. terminal(G 3) 211. terminal(B 4) 212. terminal(B 4)
191 net(3 name(0UT)) 192 net(4 name(VDD)) 193 194 194 # Outgoing pins and their connections to nets 195 pin(1 name(VSS)) 196 pin(2 name(N)) 197 pin(3 name(OUT)) 198 pin(1 name(VSS)) 199 190 200 # Devices and their connections 199 200 200 # Devices and their connections 201 device(1 PMOS 202 name(P) 203 param(L 0.25) 204 param(Ab 0) 205 param(Ab 0) 206 param(PS 0) 207 param(PS 0) 208 param(PS 0) 209 terminal(6 2) 210 terminal(6 2) 211 terminal(0 3)
192 · net(4 name(VDD)) 192 · net(4 name(VDD)) 193 · 192 · net(4 name(VDD)) 194 · # Outgoing pins and their connections to nets 193 · 195 · pin(1 name(VSS)) 195 · pin(1 name(VSS)) 196 · pin(2 name(IN)) 196 · pin(2 name(IN)) 197 · pin(3 name(OUT)) 196 · pin(2 name(IN)) 199 · 196 · pin(2 name(VDD)) 199 · 197 · pin(3 name(OUT)) 199 · 198 · 200 · # Devices and their connections 201 · 202 · name(P) 202 · name(P) 203 · param(L 0.25) 204 ·· param(M2 0.5) 204 ·· param(A5 0) 205 ·· param(A5 0) 206 ·· param(A5 0) 206 ·· param(A5 0) 208 ·· param(PS 0) 208 ·· param(PS 0) 209 · terminal(S 4) 208 ·· param(M5 0) 210 · terminal(G 2) 210 ·· terminal(G 2) 211 · terminal(D 3) 212 ·· terminal(B 4)
192 ·· net(4 name(VDD)) 192 ·· net(4 name(VDD)) 193 ·· 192 ·· net(4 name(VDD)) 193 ·· 193 ·· 194 ·# Outgoing pins and their connections to nets 193 ·· 195 · pin(1 name(VSS)) 195 · pin(1 name(VSS)) 196 · pin(2 name(IN)) 196 · pin(2 name(IN)) 197 · pin(3 name(OUT)) 196 · pin(2 name(IN)) 199 · 199 · 200 · # Devices and their connections 201 · device(1 · PMOS ·· 202 · name(P) 202 ·· name(N 1.5) ·· 203 · param(L 0.25) 204 ·· param(W 1.5) ·· 204 ·· param(M2.0) Correct 207 ·· param(PS.0) 206 ·· param(A5.0) 208 ·· param(P.0) 208 ·· param(P.0) 209 · terminal(S 4) 201 ·· derminal(S 3) 210 ·· terminal(G 2) 211 ·· terminal(G 2) 211 ·· terminal(D 3) 212 ··· terminal(B 4) ··
193 193 194 # Outgoing pins and their connections to nets 193 195 pin(1 name(VS5)) 194 # Outgoing pins and their connections to nets 195 pin(2 name(IN)) 197 pin(3 name(OUT)) 198 pin(4 name(VDD)) 198 pin(4 name(VDD)) 199 200 # Devices and their connections 201 device(1 PMOS 200 # Devices and their connections 202 name(P) 200 # Devices and their connections 203 param(L 0.25) 203 param(L 0.25) 204 param(M 1.5) 203 param(L 0.25) 205 param(AS 0) 206 param(AS 0) 206 param(AD 0) Correct 207 param(PS 0) 208 param(PD 0) 208 param(PD 0) 209 terminal(S 2) 210 terminal(S 2) 210 terminal(B 4) 211 terminal(B 4) 212 terminal(B 4)
194 # Outgoing pins and their connections to nets 194 # Outgoing pins and their connections to nets 195 - pin(1 name(VSS)) 195 - pin(1 name(VSS)) 196 - pin(2 name(IN)) 196 - pin(2 name(IN)) 197 - pin(3 name(OUT)) 196 - pin(2 name(IN)) 198 - pin(4 name(VDD)) 197 - pin(3 name(OUT)) 199 - 200 .# Devices and their connections 200 .# Devices and their connections 201 - device(1 PMOS 201 . device(1 PMOS 201 - device(1 PMOS 202 name(P) 203 param(M 1.5) 203 param(AD 0) COrrect 204 param(M 0.5) 205 param(AD 0) 205 param(AD 0) COrrect 206 param(AD 0) COrrect 207 param(PD 0) 206 param(AD 0) 208 param(PD 0) 206 param(AD 0) 209 terminal(S 4) + 210 terminal(G 2) 210 terminal(G 2) 211 terminal(B 4) 212 terminal(B 4)
195pin(1.name(VSS)) 195pin(1.name(VSS)) 196pin(2.name(IN)) 196pin(2.name(IN)) 197pin(3.name(OUT)) 197pin(3.name(OUT)) 198pin(4.name(VDD)) 199 199 199 200# Devices and their connections 200# Devices.and their connections 201device(1.PMOS 201device(1.PMOS 202name(P) 203param(L.0.25) 204param(W 1.5) 203param(L.0.25) 206param(AS.0) 205param(AS.0) 206param(AD.0) Correct 207param(PD.0) 206param(PD.0) 208param(PD.0) 208param(PD.0) 209terminal(S 4) + €209terminal(S 3) 210terminal(G 2) 210terminal(G 4) 211terminal(B 4) 212terminal(B 4)
196 · pin(2 name(IN)) 196 · pin(2 name(IN)) 197 · pin(3 name(OUT)) 197 · pin(3 name(OUT)) 198 · pin(4 name(VDD)) 197 · pin(3 name(VDD)) 199 · 198 · pin(4 name(VDD)) 200 · # Devices and their connections 201 · device(1 PMOS 201 · device(1 PMOS 201 · device(1 PMOS 202 · name(P) 203 · param(L 0.25) 204 · param(W 1.5) 203 · param(L 0.25) 205 · param(AS 0) 205 · param(AS 0) 206 · param(AD 0) Correct 207 · param(PS 0) 208 · param(L 0.25) 208 · param(L 0.8) 206 · param(AD 0) 209 · terminal(S 4) 201 · devind(S 3) 210 · terminal(G 2) 201 · devind(G 2) 211 · terminal(B 4) 212 · terminal(B 4)
197. pin(3.name(0UT)) 197. pin(3.name(0UT)) 198. pin(4.name(VDD)) 198. pin(4.name(VDD)) 199. 199. 200. # Devices and their connections 200. # Devices and their connections 201. device(1.PMOS 200. # Devices and their connections 202 name(P) 200. # Devices and their connections 203 param(L 0.25) 202 name(P) 204 param(W 1.5) 203 param(L 0.25) 205 param(AD 0) 206 param(M 0.0) 206 param(AD 0) 205 param(AD 0) 207 param(PS 0) 206 param(AD 0) 208 param(PD 0) 208 param(PS 0) 209. terminal(S 4) 206 param(PS 0) 210. terminal(D 3) 206 param(AD 0) 211. terminal(D 4) 212 terminal(B 4)
198 · pin(4 name(VDD)) 198 · pin(4 name(VDD)) 199 ··· 200 ··· # Devices and their connections 201 ·· device(1. PMOS ··· 200 ··· # Devices and their connections 201 ·· device(1. PMOS ··· 201 ··· device(1. PMOS ··· 202 ··· name(P) ··· 202 ··· name(P) ··· 203 ··· param(L 0.25) ··· 203 ··· param(L 0.25) ··· 204 ··· param(M 1.5) ··· 205 ··· param(AS 0) ··· 205 ··· param(AD 0) ··· Correct 206 ··· param(AD 0) ··· Correct 207 ··· param(PS 0) ··· 208 ··· param(PD 0) ··· 208 ··· param(PD 0) ··· 208 ··· param(PD 0) ··· 209 ··· terminal(S 4) ··· 210 ··· terminal(S 3) ··· 210 ··· terminal(G 2) ··· 210 ··· terminal(G 2) ··· 211 ··· terminal(B 4) ··· 212 ··· terminal(B 4) ···
199 199 200 . # Devices and their connections 200 . # Devices and their connections 201 . device(1 PMOS 201 . device(1 PMOS 202 . name(P) 202 . name(P) 203 . param(L 0.25) 203 . param(L 0.25) 204 . param(W 1.5) 204 . param(W 1.5) 205 . param(AS 0) 205 . param(AS 0) 206 . param(PS 0) 206 . param(PS 0) 208 . param(PD 0) 208 . param(PD 0) 209 . terminal(S 4) 4 210 . terminal(G 2) 210 . terminal(G 2) 211 . terminal(D 3) 4
200 # Devices and their connections 200 # Devices and their connections 201 device(1 PMOS 201 device(1 PMOS 202 name(P) 202 name(P) 203 param(L 0.25) 203 param(L 0.25) 204 param(W 1.5) 204 param(W 1.5) 205 param(AS 0) 205 param(AS 0) 206 param(PS 0) 206 param(PS 0) 207 param(PS 0) 208 param(PD 0) 208 param(PD 0) 208 param(PD 0) 209 terminal(S 4) 200 terminal(G 2) 211 terminal(D 3) 212 terminal(B 4)
201. device(1.PMOS 201. device(1.PMOS 202. name(P) 202. name(P) 203. param(L 0.25) 203. param(L 0.25) 204. param(W 1.5) 203. param(L 0.25) 205. param(AS 0) 205. param(AS 0) 206. param(PS 0) 206. param(PS 0) 208. param(PS 0) 208. param(PS 0) 209. terminal(S 4) → 210. terminal(G 2) 210. terminal(G 2) 211. terminal(D 3) → 212. terminal(B 4) 212. terminal(B 4)
202 name(P) 203 param(L 0.25) 204 param(W 1.5) 205 param(AS 0) 206 param(AD 0) 207 param(PS 0) 208 param(PD 0) 209 terminal(S 4) 210 terminal(G 2) 211 terminal(B 4)
203 param(L 0.25) 203 param(L 0.25) 204 param(W 1.5) 204 param(W 1.5) 205 param(AS 0) 205 param(AS 0) 206 param(AD 0) Correct 207 param(PS 0) 208 param(PS 0) 209 terminal(S 4) → 210 terminal(G 2) 210 terminal(G 2) 211 terminal(D 3) → 212 terminal(B 4) 212 terminal(B 4)
204param(W 1.5) 204param(W 1.5) 205param(AS 0) 205param(AS 0) 206param(AD 0) Correct 207param(PS 0) 206param(PS 0) 208param(PD 0) 208param(PD 0) 209terminal(S 4) → <209terminal(S 3)
205 param(AS 0) 205 param(AS 0) 205 param(AS 0) 206 param(AD 0) COrrect 206 param(AD 0) incorrect 207 param(PS 0) 208 param(PS 0) 208 param(PD 0) 208 param(PD 0) 209 terminal(S 4) → ★ 209 terminal(S 3) ■ 210 terminal(G 2) 210 terminal(G 2) 210 terminal(G 4) ■ 212 terminal(B 4) 212 terminal(B 4) ■ 212 terminal(B 4)
206 param(AD 0) Correct 207 param(PS 0) 207 208 param(PD 0) 208 209 terminal(S 4) → 210 terminal(G 2) 210 211 terminal(D 3) → 212 terminal(B 4) 212
207 param(PS 0) 207 param(PS 0) 208 param(PD 0) 208 param(PD 0) 209 terminal(S 4) → ← 209 terminal(S 3) 210 terminal(G 2) 210 terminal(G 2) 211 terminal(D 3) → ← 211 terminal(D 4) 212 terminal(B 4) 212 terminal(B 4)
208 param(PD 0) 208 param(PD 0) 209 209 terminal(S 4) + + 209 terminal(S 3) - 210 terminal(G 2) 210 terminal(G 2) - - 211 terminal(D 3) + + 211 terminal(D 4) - 212 terminal(B 4) - 212 terminal(B 4) - -
209 terminal(S 4) → ← 209 terminal(S 3) → 210 terminal(G 2) 210 terminal(G 2) → 211 terminal(D 3) → ← 211 terminal(D 4) → 212 terminal(B 4) 212 terminal(B 4) → ↓
210terminal(G.2) 210terminal(G.2) 211terminal(D.3) → ← 211terminal(D.4) 212terminal(B.4) 212terminal(B.4)
211 terminal(D 3) → ← 211 terminal(D 4) 212 terminal(B 4) 212 terminal(B 4)
212 terminal(B-4) - 212 terminal(B-4) -
214 device(2 NMOS 214 device(2 NMOS
215 name(N) 215 name(N)
216 param(L 0.25) 216 param(L 0.25)
217 param(W 0.9)
218 param(AS 0) (
219 param(AD 0) incorrect
220 param(PS 0) 220 param(PS 0)
221 param(PD 0) 221 param(PD 0)
222 terminal(S 3)
223 terminal(G 2) \sim 223 terminal(G 2) \sim
224 terminal(D 1) \triangleleft
$225 \text{terminal(B-1)} \leftarrow 225 terminal(B-$
$225 \cdot (e)$ (e)
$220 \cdot 1 = 227 = 227 = 227 = 227$

6. Correct Cross-References

<4>


The cross-references are much more confusing because all seem **correct eventually** but are inconsistent with the other (intermediate) results. <u>Where are my misunderstandings?</u>

7. Netlist Database Browser

Is there any detailed document interpreting each item that could appear in the netlist database browser? <5> I've tried to find it but couldn't so far. Some items are very intuitive. However, others are not.

Part-II: Digesting the Discussions

I believe part of my confusion stems from my understanding of source and drain interchangeability.

17AM on 2023-02-20

@sekigawa Thanks for these elaborate slides!

I should comment about the "correctness" here: my viewpoint is that "S" and "D" for a symmetric device should both be read as "S or D" as there is no differentiation.

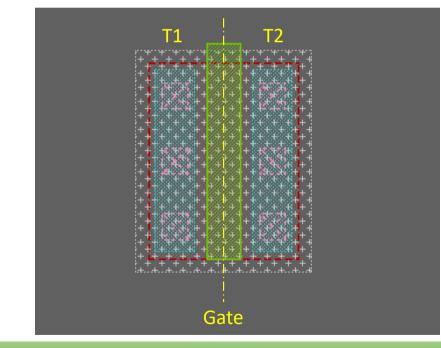
Sure the schematic is not correct if you tie D to vdd, but <u>S and D are only logical concepts</u> for symmetric devices. You could say that for a PMOS, D is the terminal with the lower and S is the terminal with the higher potential. For NMOS it is the other way round.

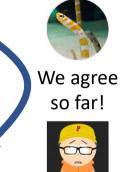
I guess that for simulation, the models do not necessarily reflect that symmetry, so for that practical reason it is probably better to assign D and S correctly in the schematic. At least if you want to use this netlist for simulation. For the topology however, the assignment is not binding for symmetric devices.

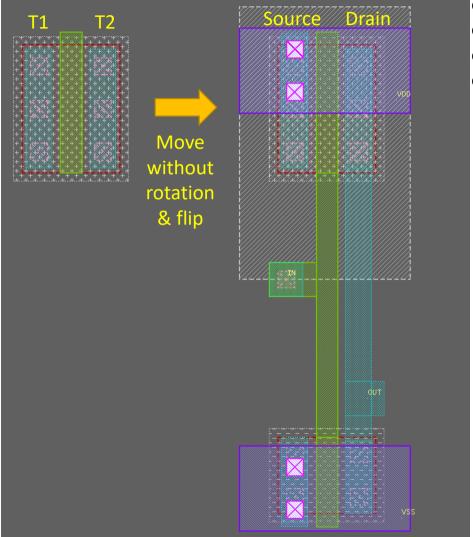
Lacking any differentiating marker, the layout extractor on the other hand will arbitrarily assign S and D for symmetric devices (like said, both terminals should be regarded "S or D"). It does not take any efforts correcting this "mistake". Instead, the netlist *compare* step regards "S" and "D" as interchangeable, hence the netlists match and all cases.

For DMOS3/4 class devices, the extractor can tell apart S and D and the netlist comparer will no longer regard S and D as interchangeable.

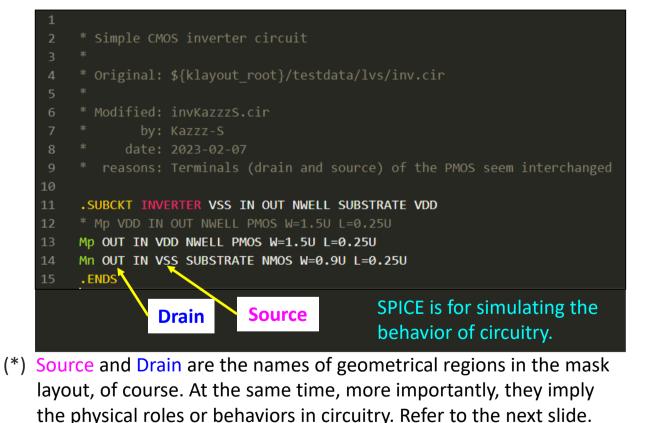
Matthias

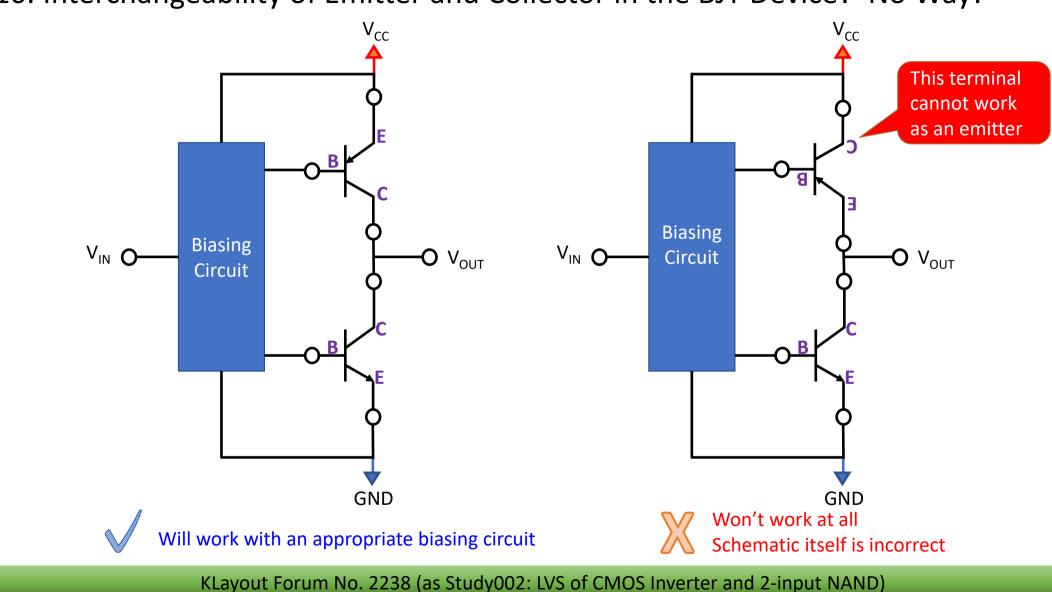

KLayout Forum No. 2238 (as Study002: LVS of CMOS Inverter and 2-input NAND)


This is a very important tool design concept, and I respect it. However, I could not read it from the inverter tutorials.

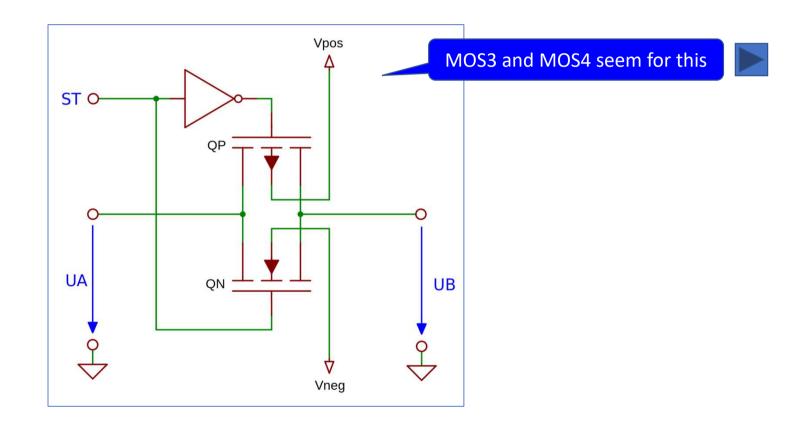

Moreover, influenced by my previous experiences, I have a different view (#20 - #24) on "S and D," which created a fundamental gap that caused my confusion.

- Below is a layout of a floating PMOS that is geometrically symmetry with respect to the gate poly.
- The terminals T1 and T2 can become the source and drain, or the drain and source, respectively.
- Therefore, we say "the source and drain can be interchangeable."
 - No objection in this stage.
- In other words, however, we cannot identify which is the source and which is the drain.


I should comment about the "correctness" here: my viewpoint is that "S" and "D" for a symmetric device should both be read as "S or D" as there is no differentiation.


- Once the PMOS is used/connected in an Inverter, **ambiguity vanishes**.
- That is, T1 is forcibly given the generic name of Source; T2, Drain
- Then, Source and Drain are no longer interchangeable in the Inverter.*
- And the SPICE net must be as follows; no other terminal connection can be possible as an Inverter.

9. My Understandings on Semiconductor Devices


Device Physics	NPN BJT	PNP BJT	N-ch MOS Tr	P-ch MOS Tr
Majority Carrier	Electron 💳	Hole 📫	Electron 💳	Hole 📫
* Majority Carrier Injector (Pitcher)	Emitter	Emitter	Source	Source
* Majority Carrier Controller	Base-Emitter Voltage (V _{BE} >0)	Base-Emitter Voltage (V _{BE} <0)	Gate-Source Voltage (V _{GS} >0)	Gate-Source Voltage (V _{GS} <0)
* Majority Carrier Receiver (Catcher)	Collector	Collector	Drain	Drain
Circuitry	V _{BE} >0	V _{BE} <0	S and D are not log	V _{GS} <0 V _{GS} <0 V _{GS} <0 V _{DD}

* My terminology Old aphorism among BJT chip designers: *Emitter current decides everything*.

10. Interchangeability of Emitter and Collector in the BJT Device? No Way!

In the Transmission Gate (analog switch) configuration, the Source and Drain names (and functions) are swappable.
Is present KLayout's LVS designed to support this case?

Part-III: Experiments

The original tutorials using inv.cir and inv2.cir seem not suitable as a "Hello, World!" program for LVS.
 They look simple at first glance but need a deep understanding of the LVS tool design concept.
 That is the pitfall I felt in.

◆ I prefer to pay an extra price for the overall simplicity and clarity of start something new.

12. Using DMOS4

Matthias 6:30AM on 2023-02-16

@dick_freebird I'm aware of this 🥶

There is another model, called "DMOS3" (no bulk pin) and "DMOS4" (bulk pin) which treats source and drain separately (see https://www.klayout.de/doc-qt5/manual/lvs_device_extractors.html#h2-192). The price to pay is that you need separate recognition layers for source and drain.

The way I implement swapping is that for "MOS3" and "MOS4" I treat the schematic netlist as given (even if drain is on VDD or GND) and try both ways of the extracted device until a match is found. For "DMOS3" and "DMOS4" the latter step is skipped.

@WENSHIH Just sharing screenshots does not make sense. This is a simple case and no device combination is needed - that only applies to fingered devices which are in parallel (B, S, G and D share the same net). I don't see how the mismatch happens (LVS report), but I also don't see the script, I can't check the layers and derviations and I cannot measure the device dimensions as I do not have the layouts. I can't really help in that case.

Matthias

KLayout Forum No. 2238 (as Study002: LVS of CMOS Inverter and 2-input NAND)

answer to

<1>

<6>

12. Using DMOS4

dick_freebird on 2023-02-20

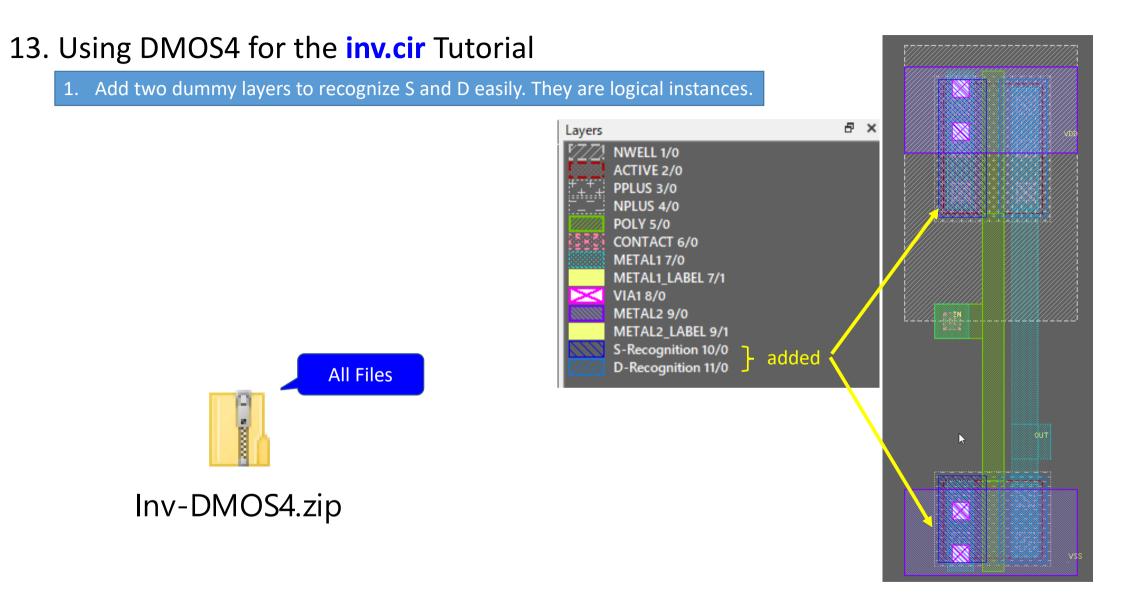
Yes, they should be but evidently are not, and I am wanting to get to the bottom of "why?".

I figure maybe removing known "not-right" from input netlists might help expose the unknown.

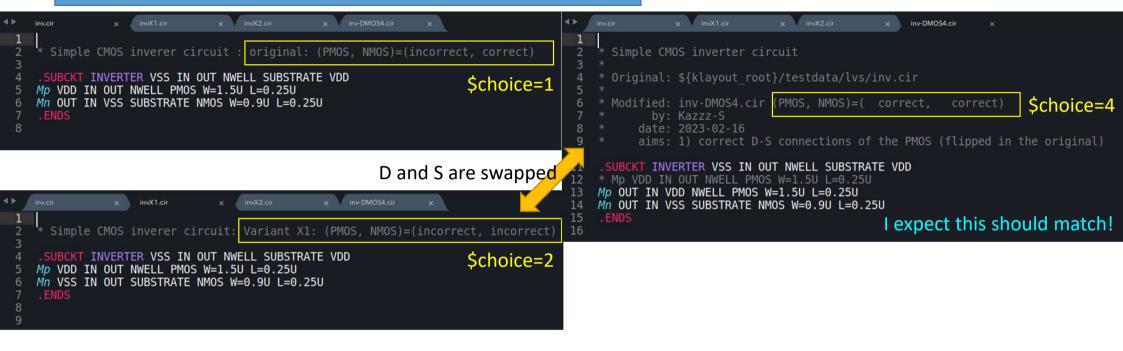
Which thus far, remains unknown.

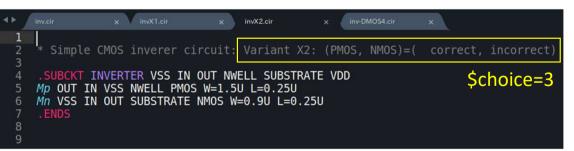
Let me ask another question which I have not seen specifically asked: "Which of the MOS extractors are in fact being used?".

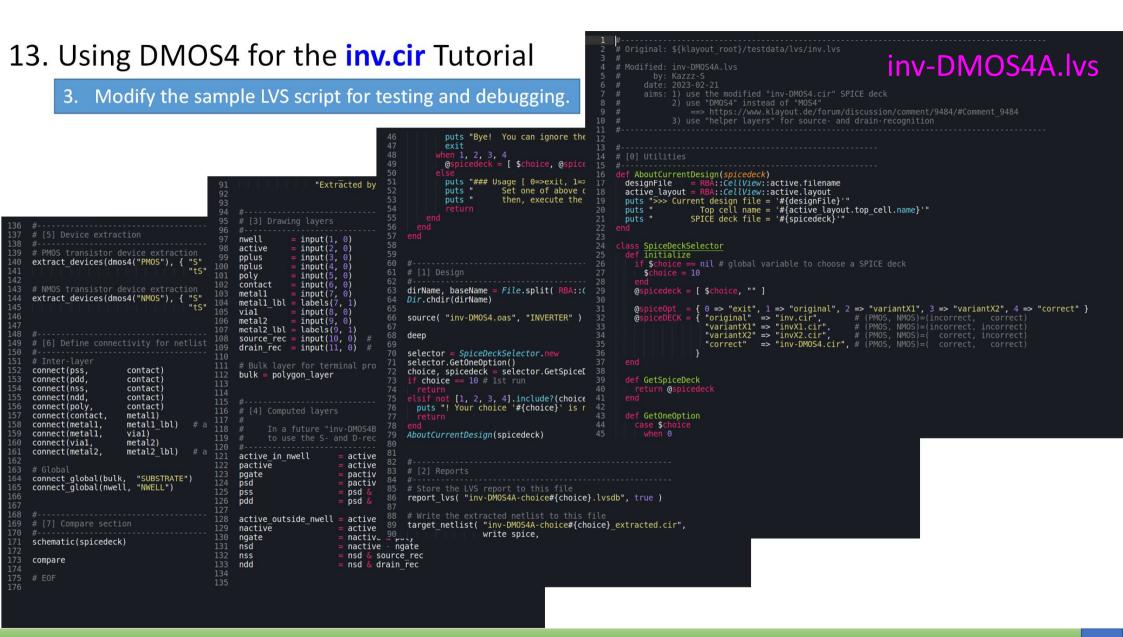
It appears to me that this layout is done on a "found PDK" and perhaps somebody set it up with non-swapping extractors by default? If you poke into the devices do you find evidence that D, S are being force-assigned (the recognition layers mentioned)?


Corrolary activity: If MOS3 / MOS4 -are- being used, how about switching to DMOS3/4 and making the S/D symbol connections "correct"? Does that fix anything? Then if so, why?

I think that showing the extract deck and the layer objects of the NMOS and PMOS elements might offer clues. If there is any sort of report file generated during layout extraction, maybe that too?


I have already attempted this activity. Please go through the succeeding slides.


KLayout Forum No. 2238 (as Study002: LVS of CMOS Inverter and 2-input NAND)


agree with you!

2. Prepare four SPICE deck files to test all S and D combinations.

4. Run the modified LVS script four times: #1/4

4 Þ	inv.cir		invX1.cir	×	invX2.cir	×	nv-DMOS4.cir	×	
1	* Simple C	MOS :	inverer	circuit	: original:	(PMOS	. NMOS)=(i	ncorrect.	correct)
3					ELL SUBSTRA	a a a a a a a a a a a a a a a a a a a			
5	Mp VDD IN	OUT I	WELL PM	OS W=1.5				Ş	choice=1
7	.ENDS	v55 :	5005TKAT		-0.90°L=0.2	50			

Netlist	Schematic	Cross Referen	ce Log				
Circuits		0	Objects		0	Layout	Reference
INVE INVE	RTER	0	🔻 📖 IN	VERTER	0	INVERTER	INVERTER
			► -D	Pins			
			► †	Nets			
			▼ ↓	Devices			
			•	나 NMOS	0	\$2 / NMOS [L=0.25,	N / NMOS [L=0.25, W=0.9]
				▶ 🔹 S ⇔ D	0	VSS (1)	VSS (2)
				▶ <mark>•</mark> D ⇔ S	0	OUT (2)	OUT (3)
				🕨 🔶 G	0	IN (2)	IN (3)
				▶ -• B		SUBSTRATE (1)	SUBSTRATE (2)
			•	나 PMOS		\$1 / PMOS [L=0.25,	P / PMOS [L=0.25, W=1.5]
				▶ • • 5		VDD (1)	VDD (2)
				▶ -• D	0	OUT (2)	OUT (3)
				🕨 🔶 G	0	IN (2)	IN (3)
				▶ 🗢 B		NWELL (1)	NWELL (2)

Configure Probe Net 🗌 Lock

> \$choice=1

1

4. Run the modified LVS script four times: #2/4

4.	inv.cir	×	invX1.cir		invX2.cir	;	k inv-D	MOS4.cir ×	
1									
2	* Simple	e CMOS	inverer	circuit:	Variant	X1:	(PMOS,	<pre>NMOS)=(incorrect,</pre>	incorrect)
3									
4				IN OUT NW			VDD	Śc	hoice=2
5				MOS W=1.5				~ ~~	
6		IN OUT	SUBSTRA	TE NMOS W	=0.9U L=0	0.250			
1	.ENDS								
8								Only this m	natched!

Netlist Schematic	Cross Referen	ce Log		
Circuits	0	Objects	Cayout	Reference
INVERTER		INVERTER	INVERTER	INVERTER
		▶ -⊃ Pins		
		▶ ↑ Nets		
		▼ ⊥ Devices		
		▼ ⊥ NMOS	\$2 / NMOS [L=0.25	, N / NMOS [L=0.25, W=0.9]
		🕨 🗢 S	VSS (1)	VSS (2)
		► 🗢 D	OUT (2)	OUT (3)
		► 🗢 G	IN (2)	IN (3)
		► 🗢 B	SUBSTRATE (1)	SUBSTRATE (2)
		▼ ⊥ PMOS	\$1 / PMOS [L=0.25	, P / PMOS [L=0.25, W=1.5]
		► • 5	VDD (1)	VDD (2)
		🕨 🗢 D	OUT (2)	OUT (3)
		► 🗢 G	IN (2)	IN (3)
		► 🗢 B	NWELL (1)	NWELL (2)

Configure Probe Net 🗌 Lock

> \$choice=2 2

>>> Current design file = '/home/sekigawa/GitWork/ForumKLayout/Study002/Inv-DMOS4/inv-DMOS4.oas'
 Top cell name = 'INVERTER'
 SPICE deck file = 'invX1.cir'

4. Run the modified LVS script four times: #3/4

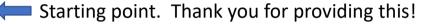
∢ ►	inv.cir	×	invX1.cir	×	invX2.cir	×	inv-DMOS4.cir	×	
1									
2	* Simple	e CMOS	inverer	circuit:	Variant	X2: (PMO	S, NMOS)=(correct,	incorrect)
4	SUBCKT	TNVER	TER VSS	IN OUT NW	FLL SUBST	TRATE VDD		¢,	hoice=3
5				MOS W=1.5				ŞC	noice=3
6	Mn VSS			TE NMOS W					
7	. ENDS								
8									

Netlist Schematic	Cross Reference	e Log		
Circuits	0	Objects	Layout	Reference
INVERTER	0	T INVERTER	S INVERTER	INVERTER
		▶ -⊃ Pins		
		🕨 🕈 Nets		
		▼ ⊥ Devices		
				N / NMOS [L=0.25, W=0.9]
		▶ <u></u>	🗢 OUT (2)	VSS (3)
	:	▶ • S ⇔ D	VSS (1)	OUT (3)
		▶ • G	🤤 IN (2)	IN (3)
		► • • B	SUBSTRATE (1)	SUBSTRATE (2)
		▼ ¥ PMOS	\$1 / PMOS [L=0.25,	P / PMOS [L=0.25, W=1.5]
		▶ • S	VDD (1)	OUT (3)
		▶ 📀 D	🗢 OUT (2)	VSS (3)
		🕨 🗢 G	🗢 IN (2)	IN (3)
		▶ •• B	NWELL (1)	NWELL (2)

Configure Probe Net 🗌 Lock

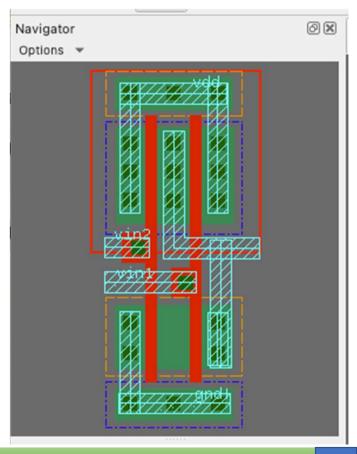
> \$choice=3

>>> Current design file = '/home/sekigawa/GitWork/ForumKLayout/Study002/Inv-DM0S4/inv-DM0S4.oas'
Top cell name = 'INVERTER'
SPICE deck file = 'invX2.cir'


13 Using D	MOS4	for the inv.	cir Tutorial	▲▶ inv.cir x invX1.cir	x invX2.cir x inv-DMOS4.cir x	
10.00119.0				2 * Simple CMOS inverte 3 *	er circuit	
4. Run th	e modified	LVS script four tim	nes: #4/4	4 * Original: \${klayout	_root}/testdata/lvs/inv.cir	
					.cir (PMOS, NMOS)=(correct, correct) \$choice:	=4
				7 * by: Kazzz-S 8 * date: 2023-02-1	6	
r r	-			9 * aims: 1) correc	t D-S connections of the PMOS (flipped in the original	
Netlist Schematic	Cross Referen	nce Log		11 .SUBCKT INVERTER VSS	IN OUT NWELL SUBSTRATE VDD	
Circuits	0	Objects	Cayout	12 * Mp VDD IN OUT NWELL 13 Mp OUT IN VDD NWELL P	MOS W=1.5U L=0.25U	
INVERTER	0	V INVERTER	INVERTER	14 Mn OUT IN VSS SUBSTRA 15 .ENDS	TE NMOS W=0.9U L=0.25U	
		▶ -□ Pins ▶ ↑ Nets		16	I expected this should match. But failed	d!
		▼ ↓ Devices				
		▼ ¥ NMOS	\$2 / NMOS [L=0.25]	, N / NMOS [L=0.25, W=0.9]		
		▶ <mark>•</mark> S ⇔ D	© VSS (1)	VSS (2)		
		▶ <u></u>	OUT (2)	OUT (3)		
		► • G	© IN (2)	IN (3)		
		► -0- B	SUBSTRATE (1)	SUBSTRATE (2)		
		▼ ¥ PMOS		, P / PMOS [L=0.25, W=1.5]		
		► - S	© VDD (1)	OUT (3)		
		▶ 📀 D	© OUT (2)	VDD (2)		
		▶ • G	© IN (2)	IN (3)		
		► •• B	NWELL (1)	NWELL (2)		
Configure Probe Net	Lock					
> \$choice=4						
4						
Top cell na	le = '/home/sel me = 'INVERTER' le = 'inv-DMOS4		ayout/Study002/Inv-DMOS	34/inv-DMOS4.oas'		
KLayout Forum No. 2238 (as Study002: IVS of CMOS Inverter and 2-input NAND)						

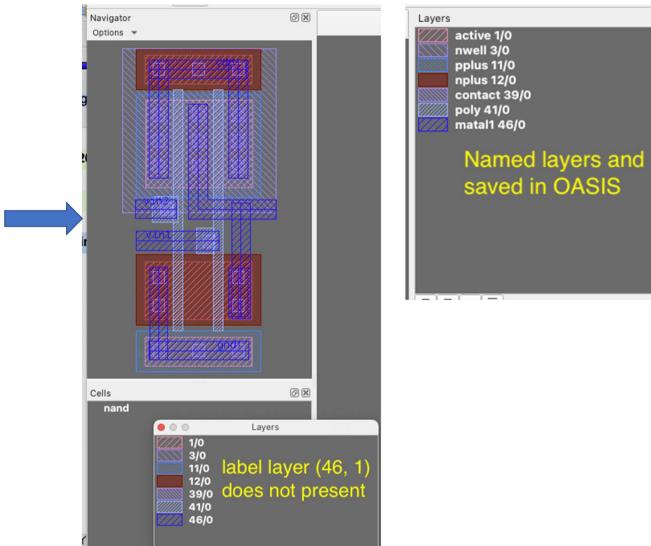
https://www.klayout.de/forum/discussion/comment/ 9493 on 2023-02-17 February 17

Thanks for your suggestion and helps! If there is any information I can supply, please tell me. Here is the test file.

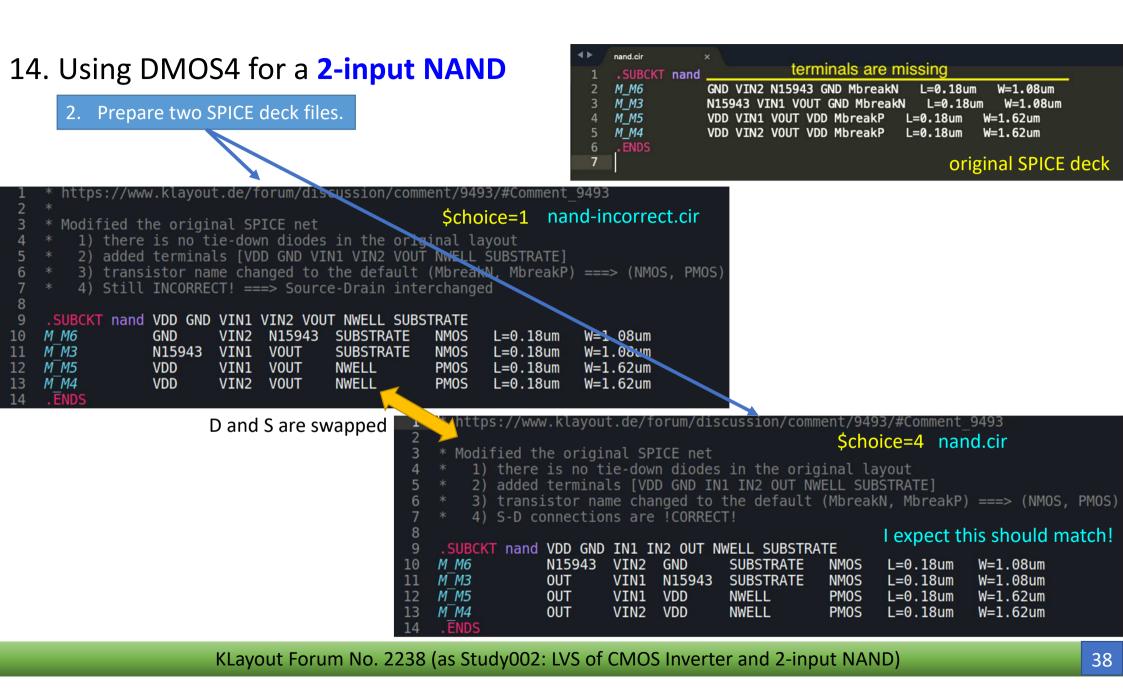

nand.test.zip 14.7K

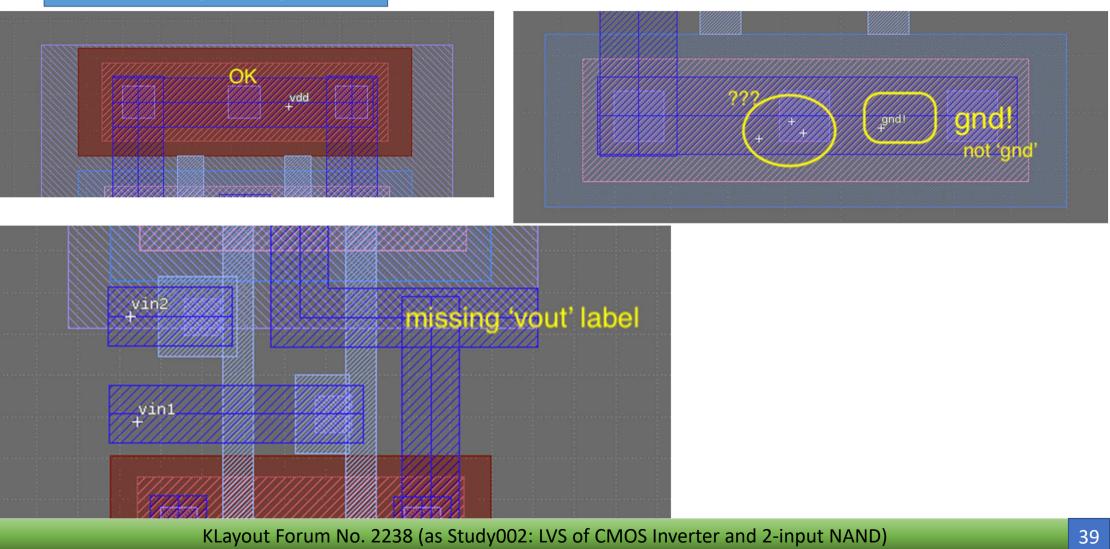
WENSHIH

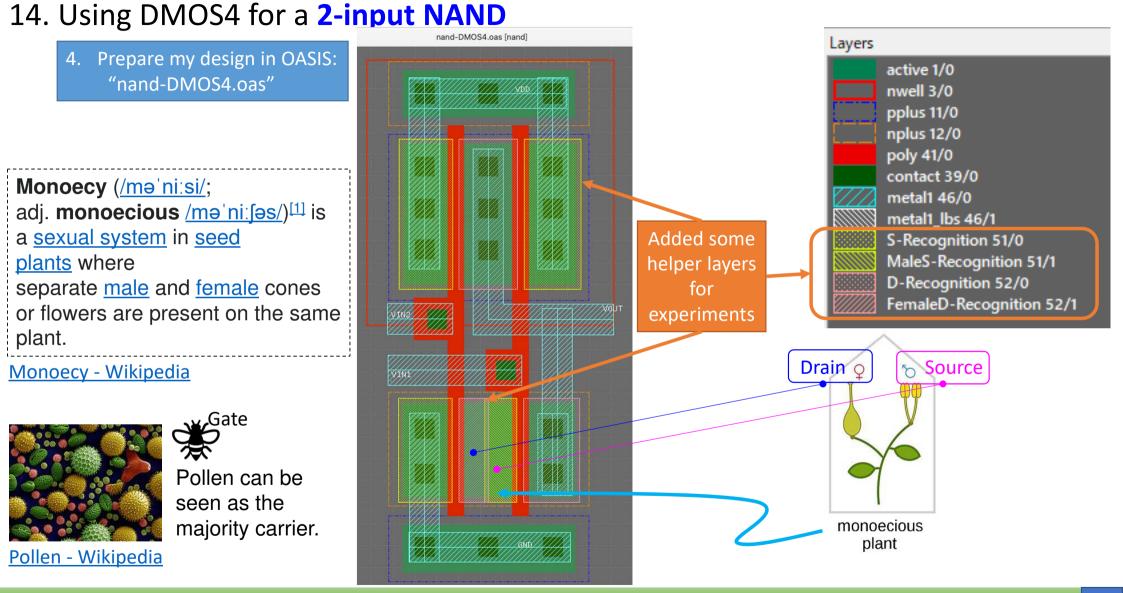
Check the provided resource files and modify them if necessary. 1.

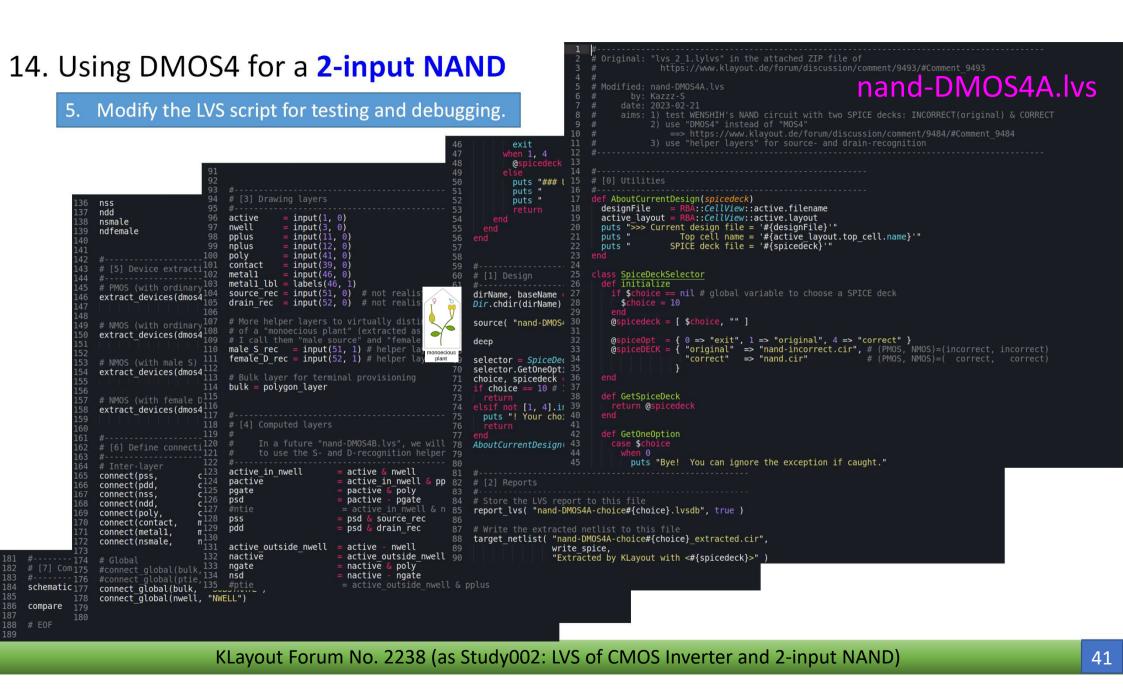


KLayout Forum No. 2238 (as Study002: LVS of CMOS Inverter and 2-input NAND)

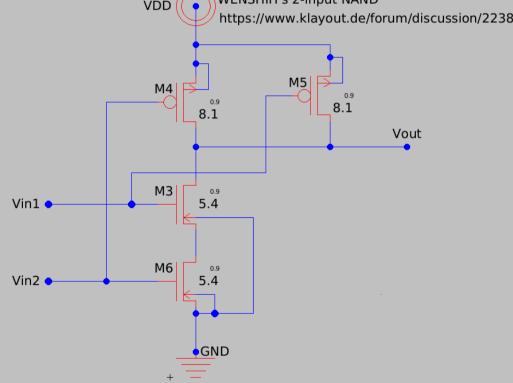

36



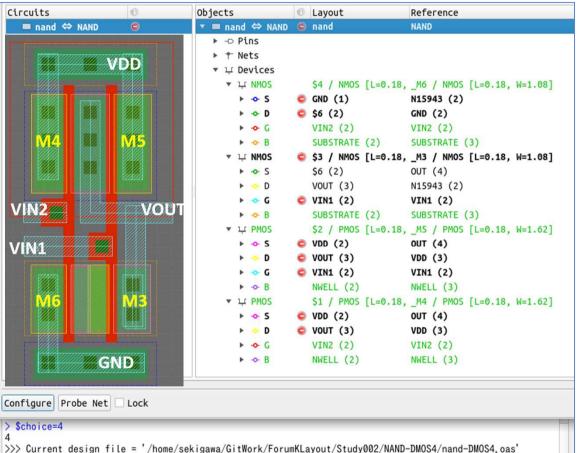

KLayout Forum No. 2238 (as Study002: LVS of CMOS Inverter and 2-input NAND)


0X

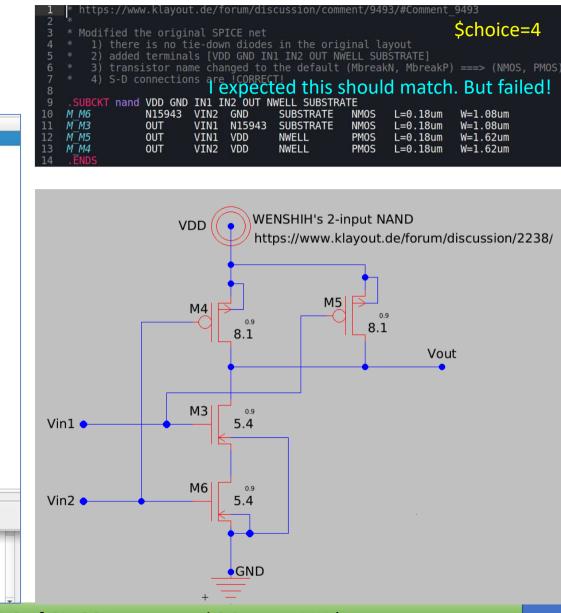
3. Check the original design in GDS2.



6. Run the modified LVS script twice: #1/2


■ nand ⇔ NAND VDD ↓ → Pins ↓ → Pins ↓ → Nets ↓ ↓ Devi ↓ ↓ Devi ↓ ↓ N ↓ → C	s s Lces MOS \$4 / NMOS [L=0.18, _M6 / NMOS [L=0.18, W=1.08]
VDD ・ + Nets ・ ↓ Devi ・ ↓ N ・ ~	.ces MOS \$4 / NMOS [L=0.18, _M6 / NMOS [L=0.18, W=1.08]
VIN2 VIN1	+ D \$6 (2) N15943 (2) + G VIN2 (2) VIN2 (3) + B SUBSTRATE (2) SUBSTRATE (3) MOS \$3 / NMOS [L=0.18, _M3 / NMOS [L=0.18, W=1.08] + S \$6 (2) N15943 (2) - D VOUT (3) VOUT (4) - G VIN1 (2) VIN1 (3) - B SUBSTRATE (2) SUBSTRATE (3) MOS \$2 / PMOS [L=0.18, _M5 / PMOS [L=0.18, W=1.62] - S VDD (2) VDD (3) - D VOUT (3) VOUT (4) - G VIN1 (2) VIN1 (3) - B NWELL (2) NWELL (3) - B NWELL (2) NWELL (3) - B NWELL (2) VDD (3) - B NWELL (2) VDD (3) - B NWELL (2) VDD (3) - B VOUT (3) VOUT (4) - G VIN2 (2) VIN2 (3)

1 2 3 4 5 6 7 8 9	<pre>* Modified t * 1) there * 2) added * 3) trans</pre>	he original is no tie- terminals istor name	SPICE net down diodes [VDD GND VI changed to	in the orio N1 VIN2 VOUT the default e-Drain inte	jinal la NWELL (Mbreak	ayout SUBSTRATE] KN, MbreakP)	\$choice=1 ===> (NMOS, PMOS) s matched!
9 10 11 12 13 14	.SUBCKT nand M_M6 M_M3 M_M5 M_M4 .ENDS	GND VI N15943 VI VDD VI	EN1 VIN2 VOU IN2 N15943 IN1 VOUT IN1 VOUT IN1 VOUT IN2 VOUT	T NWELL SUBS SUBSTRATE SUBSTRATE NWELL NWELL	STRATE NMOS NMOS PMOS PMOS	L=0.18um L=0.18um L=0.18um L=0.18um	W=1.08um W=1.08um W=1.62um W=1.62um
		VDD	/ ((🚽 /)	:NSHIH's 2-i ps://www.k			discussion/2238/



>>> Current design file = '/home/sekigawa/GitWork/ForumKLayout/Study002/NAND-DM0S4/nand-DM0S4.oas'
 Top cell name = 'nand'
 SPICE deck file = 'nand-incorrect.cir'

6. Run the modified LVS script twice: #2/2

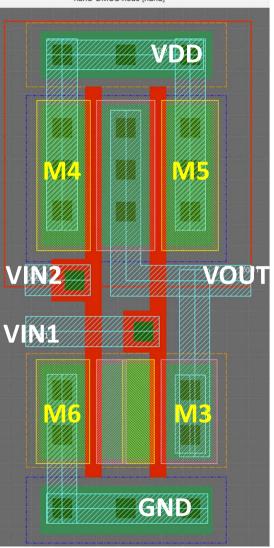
Top cell name = 'nand' SPICE deck file = 'nand cir'

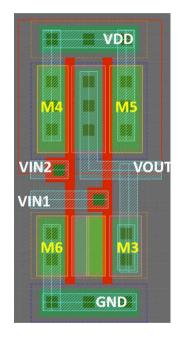
15. Summary and Intermediate Conclusions as of 2023-02-20

- ◆ To use **DMOS4** in LVS, I employed the notion of an extraction helper layer.
 - I'm not sure if inv-DMOS4A.lvs and nand-DMOS4A.lvs are appropriate or not.
 - Any suggestion will be highly appreciated.

The net extracted from a layout is correct (in the two cases).

However, a reference net (SPICE deck) seems to be misinterpreted...


• as if S and D are **always (forcibly) swapped first** even if the intention is...


The way I implement swapping is that for "MOS3" and "MOS4" I treat the schematic netlist as given (even if drain is on VDD or GND) and <u>try both ways of the extracted device until a match is found.</u> For "DMOS3" and "DMOS4" the latter step is skipped.

Local Parts Storeroom

nand-DMOS4.oas [nand]

