how can I convert pix_buffer into a numpy array format?

pix_buffer = lv.get_pixels_with_options(w, h, 0, 0, 0, db.DBox(x1, y1, x2, y2)) I want to save this buffer and transfer it to another function.

Comments

  • edited November 20

    I played with ChatGPT-4o.

    from klayout import lay
    
    inputgds  = "ringo.gds"
    #inputlyp  = "ringo.lyp"
    inputlyp  = "invKazzzS.lyp"
    outputpng = "f2625-ringo.png"
    
    layoutview = lay.LayoutView()
    cvIdx      = layoutview.load_layout( inputgds, add_cellview=True )
    cellview   = layoutview.cellview(cvIdx)
    layout     = cellview.layout()
    topcell    = layout.top_cell()
    topcellIdx = topcell.cell_index()
    layoutview.load_layer_props( inputlyp )
    #layoutview.set_config('background-color', '#4d4d4d')
    layoutview.set_config('background-color', '#dddddd')
    layoutview.max_hier_levels = layout.cell(topcellIdx).hierarchy_levels() + 1
    layoutview.zoom_fit()
    
    dbbox  = topcell.dbbox()
    scale  = 0.01 # [um/pix]
    width  = int(dbbox.width()/scale)
    height = int(dbbox.height()/scale)
    target = dbbox.enlarged(0.2, 0.5)
    print( f"TopCell={topcell.name} width={width} height={height} CellBBox={dbbox} TargetBox={target}" )
    print( f"" )
    
    pix_buffer = layoutview.get_pixels_with_options(width, height, 0, 0, 0, target)
    pix_buffer.write_png(outputpng)
    
    """
    [ChatGPT 4o]
    <Q> How to pass the PNG byte stream to numpy?
    
    <A> You can use PIL (Python Imaging Library) and io to convert a PNG byte stream to a NumPy array.
        Here is how to do it:
          First, make sure you have PIL installed. You can install it using pip install pillow
          if you haven't already.
        Here's how to pass the PNG byte stream to NumPy:
        ```
        import io
        import numpy as np
        from PIL import Image
    
        # Assuming png_bytes is your PNG byte stream
        png_bytes = b"..."
    
        # Convert the byte stream to a PIL Image
        image = Image.open(io.BytesIO(png_bytes))
    
        # Convert the PIL Image to a NumPy array
        np_array = np.array(image)
    
        print(np_array)
        ```
    """
    
    #--------------------------------------------------------------------------------------
    # Class PixelBuffer
    #       Signature: [const] bytes to_png_data
    #       Description: Converts the pixel buffer to a PNG byte stream
    #       This method may not be available if PNG support is not compiled into KLayout.
    #
    #   see https://www.w3.org/TR/png-3/#4Concepts.Format
    #       for 4.8 PNG datastream (I have not read it!)
    #--------------------------------------------------------------------------------------
    import io
    import numpy as np
    from   PIL import Image
    
    png_bytes = pix_buffer.to_png_data()
    image     = Image.open(io.BytesIO(png_bytes))
    np_array  = np.array(image)
    print(np_array)
    

    % ./F2625-KazzzS.py
    TopCell=RINGO width=2580 height=800 CellBBox=(0,0;25.8,8) TargetBox=(-0.2,-0.5;26,8.5)
    
    [[[221 221 221]
      [221 221 221]
      [221 221 221]
      ...
      [221 221 221]
      [221 221 221]
      [221 221 221]]
    
     [[221 221 221]
      [221 221 221]
      [221 221 221]
      ...
      [221 221 221]
      [221 221 221]
      [221 221 221]]
    
     [[221 221 221]
      [221 221 221]
      [221 221 221]
      ...
      [221 221 221]
      [221 221 221]
      [221 221 221]]
    
     ...
    
     [[221 221 221]
      [221 221 221]
      [221 221 221]
      ...
      [221 221 221]
      [221 221 221]
      [221 221 221]]
    
     [[221 221 221]
      [221 221 221]
      [221 221 221]
      ...
      [221 221 221]
      [221 221 221]
      [221 221 221]]
    
     [[221 221 221]
      [221 221 221]
      [221 221 221]
      ...
      [221 221 221]
      [221 221 221]
      [221 221 221]]]
    

    I guess these 221s are related to the background color.

  • Thank you for your reply. However, I feel that this conversion process is a bit inefficient. Is it possible to directly convert the pixel buffer to an array without converting it to PNG data, or to avoid using the layoutview.get_pixels_with_options function to obtain the specified region's buffer? For example, can I use the Image class from KLayout to directly obtain the array?

  • Hi @leo_cy,

    You can use PixelBuffer#pixel to get the value for a specific pixel. You can iterate over the x/y range to get the values for a range of pixels.

    There is no direct way to obtain the data from PIxelBuffer as a NumPy array. Image is something different - it is a class intended to represent images overlaid on your layout.

    I repeat a warning here: do not use screenshot data for manufacturing or analysis purposes! It does not have the quality needed for this purpose and you may find unexpected artefacts. Region#rasterize (https://www.klayout.de/doc-qt5/code/class_Region.html#method202) is a quality renderer that delivers grayscale values as a NumPy-compatible array. However, it is much slower than the screen renderer.

    Matthias

  • "Like this function, pix_buffer = layoutview.get_pixels_with_options(width, height, 0, 0, 0, target), how can I use the rasterize function to obtain the rendering effect and array values for the target area, perhaps assuming a pixel size of 10 and a spacing of 15?" .
    Your meaning is that the function layoutview.get_pixels_with_options(width, height, 0, 0, 0, target) retrieves screenshot data, which does not meet the purposes of manufacturing and analysis?

  • Maybe you could explain what you are trying to do and it will be easier to discuss.

  • Hi Matthias,
    I would like to use the GDS rendering method to achieve high-precision graphic rendering based on physical dimensions (such as nm), which will be used for production or analysis purposes.

    First, I want to render a specified area.
    Second, I need to obtain the image buffer of this area.
    Third, I need to consider the rendering efficiency.
    Can you recommend a method or example?

    Thank you very much!

  • I replied to your other post. Will that answer this question?

    Thanks,

    Matthias

Sign In or Register to comment.